
Pioneer: Verifying Code Integrity

and Enforcing Untampered Code

Execution on Legacy Systems1

1Seshadri, A., Luk, M., Shi, E., Perrig, A., van Doorn, L., and Khosla, P. 2005. “Pioneer:
verifying code integrity and enforcing untampered code execution on legacy systems”. In
Proceedings of the Twentieth ACM Symposium on Operating Systems Principles (Brighton,
United Kingdom, October 23 - 26, 2005). SOSP '05. ACM Press, New York, NY, 1-16.

Mariano Ceccato

ceccato@itc.it

19/12/2006 Pioneer: Verifying Code Integrity and Enforcing Untampered Code Execution on Legacy Systems 2

Outline

� Verifiable code execution.

� TMP approach.

� Pioneer approach.

� Pioneer architecture.

� Adoption scenario: rootkit detector.

19/12/2006 Pioneer: Verifying Code Integrity and Enforcing Untampered Code Execution on Legacy Systems 3

The problem

Verifiable code execution:

� Verifying that some arbitrary code is executed

un-tampered on an un-trusted platform, even in

the presence of malicious software on that

platform.

� The code is not modified before being invoked.

� No alternate code is executed.

� The execution state is not modified at run-time.

19/12/2006 Pioneer: Verifying Code Integrity and Enforcing Untampered Code Execution on Legacy Systems 4

Trusted Platform Module

� TPM is a hardware security co-processor that provides
some tamper resistant functions and secret keys.

� Secret keys generation.

� Cryptographic functions: encryption, decryption,
hashing.

� Generation of ticks at a regular intervals (which can be
signed by third party authorities)

� Monotonic counter function

19/12/2006 Pioneer: Verifying Code Integrity and Enforcing Untampered Code Execution on Legacy Systems 5

Remote attestation

� TMP is used to measure the state of the platform during the boot
process.

� Malicious code is detected because it causes measurements to
deviate from the expected values.

� Measurements are stored in the Platform Configuration Registers
(PCR) within TMP.

� Remote attestation allows a party to obtain assurance in the correct
operation of a remote system.

19/12/2006 Pioneer: Verifying Code Integrity and Enforcing Untampered Code Execution on Legacy Systems 6

Trusted Platform Module

� TMP based authentication can not be applied

on legacy systems (where no special purpose

hardware is available).

� Collision resistance property of SHA-1 hashing

function has been compromised.

� Tampered code with the same signature as the
authentic one.

� When a fault is revealed it is not possible to fix it

without replacing all the hardware.

19/12/2006 Pioneer: Verifying Code Integrity and Enforcing Untampered Code Execution on Legacy Systems 7

Pioneer

� Software based primitive to verify code

execution on an un-trusted legacy host

� It can be updated.

� No special purpose hardware is required.

� No particular CPU extension (e.g., virtualization).

� It provides run-time attestation.

� It is based on

� Challenge-response protocol.

� External trusted entity.

� Communication link.

19/12/2006 Pioneer: Verifying Code Integrity and Enforcing Untampered Code Execution on Legacy Systems 8

Assumptions

Dispatcher:

� It knows the exact hardware configuration of the
un-trusted client.

Un-trusted client:

� Single CPU (not over-clocked).

� CPU does not support Symmetric Multi-
Threading.

Communication channel:

� Message origin authentication.

� Un-trusted platform can only communicate with
the dispatcher when Pioneer runs.

19/12/2006 Pioneer: Verifying Code Integrity and Enforcing Untampered Code Execution on Legacy Systems 9

Attacker model

� The attacker has complete control of the

software on the un-trusted platform

(administrator privileges)

� Applications.

� Operative system.

� The attacker can not modify the hardware

� He can not load malicious firmware on disk

controllers or network interfaces.

� He can not replace the CPU with a faster one.

� He can not perform DMA-attacks.

19/12/2006 Pioneer: Verifying Code Integrity and Enforcing Untampered Code Execution on Legacy Systems 10

Verification function

� The verification function checks itself.

� It performs the integrity
measurements on the executables.

� Checksum code

� It sets up the un-tampered
environment.

� It computes a fingerprint of the
whole verification function.

� Any attack will result in a
noticeable time increase.

� Hash function

� It depends on the challenge sent
by the dispatcher.

Un-trusted Platform

Verification func

Checksum code

Send function

Hash function

Executable

19/12/2006 Pioneer: Verifying Code Integrity and Enforcing Untampered Code Execution on Legacy Systems 11

The challenge-response protocol

� The dispatcher obtains the
assurance that dynamic root of
trust exists on the un-trusted
platform.

� The dispatcher uses the dynamic
root of trust to guarantee the
verifiable code execution.

Un-trusted Platform

Verification func

Checksum code

Send function

Hash function

Executable

Un-trusted Platform

Verification func

Checksum code

Send function

Hash function

Executable

Dispatcher

Verification func

Checksum code

Send function

Hash function

Executable

Dispatcher

Verification func

Checksum code

Send function

Hash function

Executable

1. Challenge

3. Checksum

5. Hash code

7. Result (optional)

2. Compute

checksum

4. Hash 6. Invoke

19/12/2006 Pioneer: Verifying Code Integrity and Enforcing Untampered Code Execution on Legacy Systems 12

Time-optimal implementation

of checksum function
� A tampered checksum computation results in time overhead.

� The adversary could use saved time to forge the checksum.

� Function implemented as sequence of XOR and AND.

� Difficult to parallelize.

� Strongly ordered.

� Multiple instructions are issued in a superscalar processor.

� No other issue slot are available for malicious code.

()[] 4321 aaaachecksum ⊕+⊕=

() ()4321 aaaa ⊕+⊕≠

a1

a2

a3

a4

…

19/12/2006 Pioneer: Verifying Code Integrity and Enforcing Untampered Code Execution on Legacy Systems 13

Iterative checksum code

� Adversary who manipulates the input in every iteration

of the checking function causes a constant time

overhead per iteration.

Verification function

Checksum Initialization code

Checksum Loop

Epilog Code

Order of

execution

Send Function

Hash Function

19/12/2006 Pioneer: Verifying Code Integrity and Enforcing Untampered Code Execution on Legacy Systems 14

Checksum includes CPU state

� The adversary compute the checksum on a correct copy

of the tampered verification function (Memory copy

attack).

� Incorporate both PC and DP into the checksum

computation, so when they are required the adversary
loses time to forge them.

Authentic

function PC

DP Tampered

function PC

DPAuthentic

function

Authentic

function DP

PCTampered

function

Authentic

function
DP

PCTampered

function

19/12/2006 Pioneer: Verifying Code Integrity and Enforcing Untampered Code Execution on Legacy Systems 15

Low variance in execution time

� Checking code is small enough to fit into L1
CPU instruction cache.

� Verification function is small enough to fit into L1
CPU data cache.

� Checksum code execute at the highest privilege
level.

� All the maskable interrupts are turned off.

� Reduced number of non-issuable instruction (no
out-of order execution in superscalar
processors).

� No external function (os, library) is called.

19/12/2006 Pioneer: Verifying Code Integrity and Enforcing Untampered Code Execution on Legacy Systems 16

Dispatcher challenge

� The checksum depends on the challenge sent by the

dispatcher.

� The adversary can not pre-compute the checksum.

� Challenge is used to initialize a pseudo-random number

generator used in pseudo-random memory traversal.

� Challenge is the initialization value for the checksum.

Un-trusted Platform

Verification func

Checksum code

Send function

Hash function

Executable

Un-trusted Platform

Verification func

Checksum code

Send function

Hash function

Executable

Dispatcher

Verification func

Checksum code

Send function

Hash function

Executable

Dispatcher

Verification func

Checksum code

Send function

Hash function

Executable

1. Challenge

3. Checksum

5. Hash code

7. Result (optional)

2. Compute

checksum

4. Hash 6. Invoke

19/12/2006 Pioneer: Verifying Code Integrity and Enforcing Untampered Code Execution on Legacy Systems 17

Execution environment

� Turn off all the maskable interrupts

� Success only if running at the highest privilege level.

� Failure in case of lower privilege.

� Time overhead if running in a software virtual machine

monitor (e.g., VMware).

� Register flags are incorporated in each checksum

iteration.

� Exception handler for all non-maskable interrupts is

replaced with the “interrupt-return” instruction.

� Call stack is used to store part of the checksum during

its computation.

19/12/2006 Pioneer: Verifying Code Integrity and Enforcing Untampered Code Execution on Legacy Systems 18

How many iterations?

� Adversary can pre-load verification function into L1 CPU cache (no
cache miss) and have a zero RTT

� Adversary time advantage (a).

� Adversary overhead per iteration (o) .

� Total overhead increases linearly with the number of iterations
(n*o/c).

� CPU clock speed (c).

o

ac
n

∗
>

19/12/2006 Pioneer: Verifying Code Integrity and Enforcing Untampered Code Execution on Legacy Systems 19

Experimental results

� RTT is evaluated considering the PING latency on
different host in the LAN segment.
� RTT < 0.25 ms

� Cache pre-warming time evaluated empirically
� 0.0016 ms

� a = 0.2516 ms
� o = 0.6 CPU cycle per iteration

� n = 1,250,000 iterations (on 2.8Ghz CPU)

� To prevent false positives n is doubled (2,500,000
iterations).

� r = time to perform 2,500,000 iterations
� If dispatcher receive the answer after r + RTT it is

considered in late.

19/12/2006 Pioneer: Verifying Code Integrity and Enforcing Untampered Code Execution on Legacy Systems 20

Rootkits

� Rootkit is a software installed by an intruder on

a host that allows the intruder to gain privileged

access to the host, while remaining undetected.

� Some rootkits do not modify the kernel (easy to
locate).

� Some rootkits do modify the kernel (kernel can
not be trusted to locate them).

19/12/2006 Pioneer: Verifying Code Integrity and Enforcing Untampered Code Execution on Legacy Systems 21

Kernel rootkit detector

� Pioneer is used to guarantee the verifiable code execution of the Kernel
Measurement Agent (KMA).

� KMA is used to compute the hash value of the running kernel.

� KMA runs at kernel privilege.

� Kernel is hashed.

� Module pointer is checked.

� Kernel version is checked.

� Return address is checked.

Un-trusted Platform

Verification func

Checksum code

Send function

Hash function

KMA

Dispatcher

Verification func

Checksum code

Send function

Hash function

Executable

Dispatcher

Verification func

Checksum code

Send function

Hash function

Executable

1. Challenge

3. Checksum

5. Hash code

8. Result

4. Hash 6. Invoke

kernel

7. Measure

19/12/2006 Pioneer: Verifying Code Integrity and Enforcing Untampered Code Execution on Legacy Systems 22

Experimental results

� Rootkit detector runs every 5 seconds.

� Computational and I/O intensive operations are
used as benchmarks.

� PostMark: file system benchmark.

� Bunzip2: uncompress all the firefox source code.

� Copy: copy of all the Linux source code (1.33
Gb).

3.2%385373Copy

1.5%21.71321.296Bunzip2

1.9%52.9952PostMark

OverheadRootkit detector Standalone Benchmark

19/12/2006 Pioneer: Verifying Code Integrity and Enforcing Untampered Code Execution on Legacy Systems 23

Open issues

� Formal proof of code optimality.

� Avoid that an adversary can use mathematical

methods to generate a function that computes

the same checksum when fed with the same

input.

� Provide a checksum function which is CPU

independent.

� Increase the time overhead for an attack.

19/12/2006 Pioneer: Verifying Code Integrity and Enforcing Untampered Code Execution on Legacy Systems 24

End of slide show, click to exit.

19/12/2006 Pioneer: Verifying Code Integrity and Enforcing Untampered Code Execution on Legacy Systems 25

Pioneer architecture

Un-trusted Platform

Verification func

Checksum code

Send function

Hash function

Executable

Dispatcher

Verification func

Checksum code

Send function

Hash function

Executable

1. Challenge

3. Checksum

5. Hash code

7. Result (optional)

2. Compute

checksum

4. Hash 6. Invoke

19/12/2006 Pioneer: Verifying Code Integrity and Enforcing Untampered Code Execution on Legacy Systems 26

Un-trusted Platform

Verification func

Checksum code

Send function

Hash function

KMA

Dispatcher

Verification func

Checksum code

Send function

Hash function

Executable

1. Challenge

3. Checksum

5. Hash code

8. Result

4. Hash 6. Invoke

kernel

7. Measure

