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Outline

� Verifiable code execution.

� TMP approach.

� Pioneer approach.

� Pioneer architecture.

� Adoption scenario: rootkit detector.
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The problem

Verifiable code execution:

� Verifying that some arbitrary code is executed 

un-tampered on an un-trusted platform, even in 

the presence of malicious software on that 

platform.

� The code is not modified before being invoked.

� No alternate code is executed.

� The execution state is not modified at run-time.
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Trusted Platform Module

� TPM is a hardware security co-processor that provides 
some tamper resistant functions and secret keys.

� Secret keys generation.

� Cryptographic functions: encryption, decryption, 
hashing.

� Generation of ticks at a regular intervals (which can be 
signed by third party authorities)

� Monotonic counter function
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Remote attestation

� TMP is used to measure the state of the platform during the boot
process.

� Malicious code is detected because it causes measurements to 
deviate from the expected values.

� Measurements are stored in the Platform Configuration Registers 
(PCR) within TMP.

� Remote attestation allows a party to obtain assurance in the correct 
operation of a remote system.
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Trusted Platform Module

� TMP based authentication can not be applied 

on legacy systems (where no special purpose 

hardware is available).

� Collision resistance property of SHA-1 hashing 

function has been compromised.

� Tampered code with the same signature as the 
authentic one.

� When a fault is revealed it is not possible to fix it 

without replacing all the hardware.
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Pioneer

� Software based primitive to verify code 

execution on an un-trusted legacy host

� It can be updated.

� No special purpose hardware is required.

� No particular CPU extension (e.g., virtualization).

� It provides run-time attestation.

� It is based on 

� Challenge-response protocol.

� External trusted entity.

� Communication link.
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Assumptions

Dispatcher:

� It knows the exact hardware configuration of the 
un-trusted client.

Un-trusted client:

� Single CPU (not over-clocked).

� CPU does not support Symmetric Multi-
Threading.

Communication channel:

� Message origin authentication.

� Un-trusted platform can only communicate with 
the dispatcher when Pioneer runs.
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Attacker model

� The attacker has complete control of the 

software on the un-trusted platform 

(administrator privileges)

� Applications.

� Operative system.

� The attacker can not modify the hardware

� He can not load malicious firmware on disk 

controllers or network interfaces.

� He can not replace the CPU with a faster one.

� He can not perform DMA-attacks.
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Verification function

� The verification function checks itself.

� It performs the integrity 
measurements on the executables.

� Checksum code

� It sets up the un-tampered 
environment.

� It computes a fingerprint of the 
whole verification function.

� Any attack will result in a 
noticeable time increase.

� Hash function

� It depends on the challenge sent 
by the dispatcher.

Un-trusted Platform

Verification func

Checksum code

Send function

Hash function

Executable
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The challenge-response protocol

� The dispatcher obtains the 
assurance that dynamic root of 
trust exists on the un-trusted 
platform.

� The dispatcher uses the dynamic 
root of trust to guarantee the 
verifiable code execution.
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Time-optimal implementation

of checksum function
� A tampered checksum computation results in time overhead.

� The adversary could use saved time to forge the checksum.

� Function implemented as sequence of XOR and AND.

� Difficult to parallelize.

� Strongly ordered.

� Multiple instructions are issued in a superscalar processor.

� No other issue slot are available for malicious code.

( )[ ] 4321 aaaachecksum ⊕+⊕=

( ) ( )4321 aaaa ⊕+⊕≠
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…
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Iterative checksum code

� Adversary who manipulates the input in every iteration 

of the checking function causes a constant time 

overhead per iteration.

Verification function

Checksum Initialization code

Checksum Loop

Epilog Code

Order of 

execution

Send Function

Hash Function
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Checksum includes CPU state

� The adversary compute the checksum on a correct copy 

of the tampered verification function (Memory copy 

attack).

� Incorporate both PC and DP into the checksum 

computation, so when they are required the adversary 
loses time to forge them.
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function PC

DP Tampered 

function PC
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Low variance in execution time

� Checking code is small enough to fit into L1 
CPU instruction cache.

� Verification function is small enough to fit into L1 
CPU data cache.

� Checksum code execute at the highest privilege 
level.

� All the maskable interrupts are turned off.

� Reduced number of non-issuable instruction (no 
out-of order execution in superscalar 
processors).

� No external function (os, library) is called.
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Dispatcher challenge

� The checksum depends on the challenge sent by the 

dispatcher.

� The adversary can not pre-compute the checksum.

� Challenge is used to initialize a pseudo-random number 

generator used in pseudo-random memory traversal.

� Challenge is the initialization value for the checksum.
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Execution environment

� Turn off all the maskable interrupts

� Success only if running at the highest privilege level.

� Failure in case of lower privilege.

� Time overhead if running in a software virtual machine 

monitor (e.g., VMware).

� Register flags are incorporated in each checksum 

iteration.

� Exception handler for all non-maskable interrupts is 

replaced with the “interrupt-return” instruction.

� Call stack is used to store part of the checksum during 

its computation.
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How many iterations?

� Adversary can pre-load verification function into L1 CPU cache (no 
cache miss) and have a zero RTT

� Adversary time advantage (a).

� Adversary overhead per iteration (o) .

� Total overhead increases linearly with the number of iterations 
(n*o/c).

� CPU clock speed (c).

o

ac
n

∗
>
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Experimental results

� RTT is evaluated considering the PING latency on 
different host in the LAN segment. 
� RTT < 0.25 ms

� Cache pre-warming time evaluated empirically
� 0.0016 ms

� a = 0.2516 ms
� o = 0.6 CPU cycle per iteration

� n = 1,250,000 iterations (on 2.8Ghz CPU)

� To prevent false positives n is doubled ( 2,500,000 
iterations).

� r = time to perform 2,500,000 iterations
� If dispatcher receive the answer after r + RTT it is 

considered in late.
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Rootkits

� Rootkit is a software installed by an intruder on 

a host that allows the intruder to gain privileged 

access to the host, while remaining undetected.

� Some rootkits do not modify the kernel (easy to 
locate).

� Some rootkits do modify the kernel (kernel can 
not be trusted to locate them).
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Kernel rootkit detector

� Pioneer is used to guarantee the verifiable code execution of the Kernel 
Measurement Agent (KMA).

� KMA is used to compute the hash value of the running kernel.

� KMA runs at kernel privilege.

� Kernel is hashed.

� Module pointer is checked.

� Kernel version is checked.

� Return address is checked.
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Experimental results

� Rootkit detector runs every 5 seconds.

� Computational and I/O intensive operations are 
used as benchmarks.

� PostMark: file system benchmark.

� Bunzip2: uncompress all the firefox source code.

� Copy: copy of all the Linux source code (1.33 
Gb).

3.2%385373Copy

1.5%21.71321.296Bunzip2

1.9%52.9952PostMark

OverheadRootkit detector Standalone Benchmark
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Open issues

� Formal proof of code optimality.

� Avoid that an adversary can use mathematical 

methods to generate a function that computes 

the same checksum when fed with the same 

input.

� Provide a checksum function which is CPU 

independent.

� Increase the time overhead for an attack.
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End of slide show, click to exit.
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Pioneer architecture
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