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Motivation

Drawback of Code Obfuscation: weak theoretical basis
⇒ difficult to formally study and certify effectiveness

Goal: investigate the semantic effects of code obfuscation
in order to provide a formal definition of code obfuscation
based on program semantics and abstract interpretation
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Abstract Interpretation

Design approximate semantics of programs [Cousot & Cousot ’77, ’79].

α

γ

⊤ ⊤

α(c)γ(α(c))

c

⊥

C

⊥

A

Galois Connection: 〈C, α, γ, A〉, A and C are complete lattices.

〈Abs(C),⊑〉 set of all possible abstract domains,

A1 ⊑ A2 if A1 is more concrete than A2
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Example

Sign is an abstraction of ℘(Z):

Z
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∅

℘(Z)

{−1,−3,−4} {2, 3, 5}

∅
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Example

Sign is an abstraction of ℘(Z):
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Compare Abstractions

Z

0− 0+

℘(Z)

∅

0

0− 0+

∅

0

6= 0

− +

Sign Sign+

Sign is more abstract than Sign+: Sign+ ⊑ Sign
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Soundness

Let 〈A, α, γ, C〉 be a GC, f : C → C and f♯ : A → A, then:

⊤

f
f♯

α

α

C

⊥

⊤

f(x)

x

A

⊥

α(x)

α(f(x))

f♯(α(x))

Soundness: α ◦ f(x) ≤A f
♯ ◦ α(x)
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Soundness

Let 〈A, α, γ, C〉 be a GC, f : C → C and f♯ : A → A, then:

γ

C

⊥

⊤

A

⊥

⊤

x

f♯(x)
γ(f♯(x))

f(γ(x))

γ(x)

f♯

f
γ

Soundness: α ◦ f(x) ≤A f
♯ ◦ α(x)

Soundness: f ◦ γ(x) ≤C γ ◦ f(x)

Best Correct Approximation: α ◦ f ◦ γ
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Backward-Completeness

Let 〈A, α, γ, C〉 be a GC, f : C → C and f♯ : A → A, then:

f♯

α

α

C

⊥

x

f(x)

⊤ ⊤

α(f(x)) = f♯(α(x))

α(x)

⊥
A

f

B-Completeness: α ◦ f(x) = f♯ ◦ α(x)
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Forward-Completeness

Let 〈A, α, γ, C〉 be a GC, f : C → C and f♯ : A → A, then:

f(γ(x)) =γ(f♯(x))

C

⊥

⊤

A

⊥

⊤

x

f♯(x)

γ(x)

f♯

f
γ

γ

B-Completeness: α ◦ f(x) = f♯ ◦ α(x)

F-Completeness: f ◦ γ(x) = γ ◦ f♯(x)
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Forward-Completeness

Let 〈A, α, γ, C〉 be a GC, f : C → C and f♯ : A → A, then:

f(γ(x)) =γ(f♯(x))

C

⊥

⊤

A

⊥

⊤

x

f♯(x)

γ(x)

f♯

f
γ

γ

B-Completeness: α ◦ f(x) = f♯ ◦ α(x)

F-Completeness: f ◦ γ(x) = γ ◦ f♯(x)

How to get complete domains? Completeness domain refinement
[Giacobazzi et al. 2000]
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Example

Z

0− 0+

∅

0

Sign

Sign(10) ⊕ Sign(−5) = 0 + ⊕ 0− = Z

Sign(10 + (−5)) = Sign(5) = 0+

Sign is not B-complete for addition
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Example

Z

∅

oddeven

0

Parity

Parity(10) ⊕ Parity(−5) = even ⊕ odd = odd

Parity(10 + (−5)) = Parity(5) = odd

Parity is B-complete for addition
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Program Transformation

[Cousot & Cousot POPL’02]

semantics t[S[[P]]] ⊑ S[[T[[P]]]]

program P

Subject Syntactic

transformation T
program T[[P]]

Transformed

p S p S

Semantic
Transformed

transformation t

program program

semantics S[[P]]

Subject

Syntactic transformation: T = p◦t◦S
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Code Obfuscation

[C. Collberg et al. ’97, ’98]

T : P→ P is a code obfuscation if:

T is potent, i.e. T[[P]] is more complex than P

T preserves the observational behaviour of programs, i.e. the input-output
behaviour (denotational semantics DenSem)

A Semantics-Based Approach to Code Obfuscation – p.13



Code Obfuscation

[C. Collberg et al. ’97, ’98]

T : P→ P is a code obfuscation if:

T is potent, i.e. T[[P]] is more complex than P

T preserves the observational behaviour of programs, i.e. the input-output
behaviour (denotational semantics DenSem)

AI describes the relation among semantics at different levels of abstraction:
Hierarchy of semantics defined by [Cousot ’00]:
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σ0

σ1

σ2 σ3

σ5

σ6

S[[P]] trace semantics

σ4

D Denotational semantics
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Code Obfuscation and Program Semantics

[M. Dalla Preda and R. Giacobazzi ICALP’05]

T : P→ P is potent if there is a property ϕ ∈ Abs(Sem) such that:

ϕ(S[[P]]) 6= ϕ(S[[T[[P]]]])
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Code Obfuscation and Program Semantics

[M. Dalla Preda and R. Giacobazzi ICALP’05]

T : P→ P is potent if there is a property ϕ ∈ Abs(Sem) such that:

ϕ(S[[P]]) 6= ϕ(S[[T[[P]]]])

The most concrete property preserved by T is:

δT = ⊓
{
ϕ ∈ Abs(Sem)

˛

˛

˛ ϕ(S[[P]]) = ϕ(S[[T[[P]]]])
}
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Code Obfuscation and Program Semantics

[M. Dalla Preda and R. Giacobazzi ICALP’05]
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OδT
=
{
ϕ

˛

˛

˛ δT 6⊑ ϕ
}

λx.⊤

λx.x

δT

OδT
=
{
ϕ

˛

˛

˛ ϕ⊖ (ϕ⊔ δT) 6=⊤
}
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Semantic Code Obfuscation

[M. Dalla Preda and R. Giacobazzi ICALP’05]
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Semantic Code Obfuscation

[M. Dalla Preda and R. Giacobazzi ICALP’05]

Semantics-based Definition

T : P→ P is a δ−obfuscator if:
δT = δ and Oδ 6= ∅
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Semantics-based Definition

T : P→ P is a δ−obfuscator if:
δT = δ and Oδ 6= ∅

EXAMPLE: X  2X obfuscates the parity and preserves the sign of X

Collberg’s Obfuscators =
{
δ − obfuscators

˛

˛

˛ δ ⊑ DenSem
}
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T : P→ P is a δ−obfuscator if:
δT = δ and Oδ 6= ∅

EXAMPLE: X  2X obfuscates the parity and preserves the sign of X

Collberg’s Obfuscators =
{
δ − obfuscators

˛

˛

˛ δ ⊑ DenSem
}

Compare obfuscators w.r.t. potency: T1 is more potent than T2 iff δ2 ⊑ δ1
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Semantic Code Obfuscation

[M. Dalla Preda and R. Giacobazzi ICALP’05]

Semantics-based Definition

T : P→ P is a δ−obfuscator if:
δT = δ and Oδ 6= ∅

EXAMPLE: X  2X obfuscates the parity and preserves the sign of X

Collberg’s Obfuscators =
{
δ − obfuscators

˛

˛

˛ δ ⊑ DenSem
}

Compare obfuscators w.r.t. potency: T1 is more potent than T2 iff δ2 ⊑ δ1

Constructive characterization of δT
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Control Code Obfuscation

Control Code Obfuscation affects the control flow of the program
often by inserting opaque predicates.

T[[P]]

PT
T F

Cn

...

C3 ;

C2 ;
C1 ;

Ci+1 ; ... ;Cn

C1 ;C2 ;... ;Ci

P

T
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Attackers and Completeness

Precise detection of Opaque Predicates:

An attacker ϕ breaks an opaque predicate Pr

if ϕ recognises the always true value of Pr
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Attackers and Completeness

Precise detection of Opaque Predicates:

An attacker ϕ breaks an opaque predicate Pr

if ϕ recognises the always true value of Pr

∀x ∈ Z : g(x) = h(x)

[M. Dalla Preda and R. Giacobazzi SEFM’05]: if attacker ϕ is F-complete for g
and h, then ϕ breaks the opaque predicate ∀x ∈ Z : g(x) = h(x)

∀x ∈ Z : n mod f(x)

[M. Dalla Preda and R. Giacobazzi AMAST’06]: if attacker ϕ is B-complete for
the elementary functions composing f then ϕ breaks the opaque
predicate ∀x ∈ Z : n mod f(x)
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Attackers and Completeness

Precise detection of Opaque Predicates:

An attacker ϕ breaks an opaque predicate Pr

if ϕ recognises the always true value of Pr

∀x ∈ Z : g(x) = h(x)

[M. Dalla Preda and R. Giacobazzi SEFM’05]: if attacker ϕ is F-complete for g
and h, then ϕ breaks the opaque predicate ∀x ∈ Z : g(x) = h(x)

∀x ∈ Z : n mod f(x)

[M. Dalla Preda and R. Giacobazzi AMAST’06]: if attacker ϕ is B-complete for
the elementary functions composing f then ϕ breaks the opaque
predicate ∀x ∈ Z : n mod f(x)

consider OP1 and OP2: if COP1
(ϕ) ⊑ COP2

(ϕ), then OP1 is more resilient
than OP2 in contrasting ϕ
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Obfuscation and Malware
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Semantic Malware Detector

[M. Dalla Preda et al. POPL’07]

A program P is infected by malware M, denoted M →֒ P

if (a part) of P execution is similar to that of M:
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Semantic Malware Detector

[M. Dalla Preda et al. POPL’07]

A program P is infected by malware M, denoted M →֒ P

if (a part) of P execution is similar to that of M:

∃ restriction r : S[[M]] ⊆ αr(S[[P]])

αr

malware trace

program trace
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Semantic Malware Detector

[M. Dalla Preda et al. POPL’07]

A program P is infected by malware M, denoted M →֒ P

if (a part) of P execution is similar to that of M:

∃ restriction r : S[[M]] ⊆ αr(S[[P]])

αr

malware trace

program trace

Vanilla Malware i.e. not obfuscated malware
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Obfuscated Malware

[M. Dalla Preda et al. POPL’07]

O : P→ P obfuscating transformation

αO : Sem→ A abstraction that discards the details changed by the
obfuscation while preserving maliciousness

∃ restriction r : αO(S[[M]]) ⊆ αO(αr(S[[P]]))
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Obfuscated Malware

[M. Dalla Preda et al. POPL’07]

O : P→ P obfuscating transformation

αO : Sem→ A abstraction that discards the details changed by the
obfuscation while preserving maliciousness

∃ restriction r : αO(S[[M]]) ⊆ αO(αr(S[[P]]))

obfuscated malware trace

αr

αO

αO

malware trace

program trace
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Sound vs Complete

[M. Dalla Preda et al. POPL’07]

Precision of the SMD depends on the choice of αO
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[M. Dalla Preda et al. POPL’07]

Precision of the SMD depends on the choice of αO

A SMD on αO is complete w.r.t. a set O of transformations if ∀O ∈ O:

O(M) →֒ P ⇒

{
∃ restriction r :

αO(S[[M]]) ⊆ αO(αr(S[[P]]))

always detects programs that are infected (no false negatives)
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Sound vs Complete

[M. Dalla Preda et al. POPL’07]

Precision of the SMD depends on the choice of αO

A SMD on αO is complete w.r.t. a set O of transformations if ∀O ∈ O:

O(M) →֒ P ⇒

{
∃ restriction r :

αO(S[[M]]) ⊆ αO(αr(S[[P]]))

always detects programs that are infected (no false negatives)

A SMD on αO is sound w.r.t. a set O of transformations if:

∃ restriction r :

αO(S[[M]]) ⊆ αO(αr(S[[P]]))

}

⇒ ∃O ∈ O : O(M) →֒ P

never erroneously claims a program is infected (no false positives)

A Semantics-Based Approach to Code Obfuscation – p.22



Main Results

[M. Dalla Preda et al. POPL’07]

Classification of obfuscating transformations w.r.t. their effects on
program semantics

conservative

non-conservative

Abstraction that is both sound and complete for conservative obfuscation

Possible strategies in order to handle non-conservative obfuscations

Flexibility of the abstract interpretation-based approach

Prove completeness of the semantics-aware malware detector
[Christodorescu et al. 2005]
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Open issues (related to RE-TRUST)

Metamorphic viruses and monitor factory

Composition of elementary obfuscations

The checker may verify the satisfaction of some properties of program
behaviour (abstract semantics)
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Thank you!
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Sound vs Complete

[M. Dalla Preda et al. POPL’07]

If αO is preserved by O then the SMD on αO is complete w.r.t. O:

∀P ∈ P : αO(S[[P]]) = αO(S[[O[[P]]]])
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Sound vs Complete

[M. Dalla Preda et al. POPL’07]

If αO is preserved by O then the SMD on αO is complete w.r.t. O:

∀P ∈ P : αO(S[[P]]) = αO(S[[O[[P]]]])

Given an abstraction α, consider the set O of transformations such that
∀P, T ∈ P:

(α(S[[T ]])) ⊆ α(S[[P]]))⇒ (∃O ∈ O : S[[O[[T ]]]]) ⊆ S[[P]])

then, the SMD on α is sound w.r.t. O
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Classifying Transformations

[M. Dalla Preda et al. POPL’07]

O : P→ P is a conservative transformation if

∀ trace1 ∈ S[[P]], ∃ trace2 ∈ S[[O[[P]]]]: trace1 is sub-sequence of trace2

program trace

program trace
1 2 3 4

1 2 3 4

obfuscated

O : P→ P is a non-conservative transformation if O is not conservative
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Conservative

[M. Dalla Preda et al. POPL’07]

Suitable abstraction for conservative transformations:
αc[X](Y) = X ∩ SubSequences(Y)

returns all the traces in X that are sub-sequences of a trace in Y

αc[S[[M]]](S[[Oc[[M]]]]) = S[[M]]

Oc(M) →֒ P iff ∃ restriction r: αc[S[[M]]](S[[M]]) ⊆ αc[S[[M]]](αr(S[[P]]))
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Conservative

[M. Dalla Preda et al. POPL’07]

Suitable abstraction for conservative transformations:
αc[X](Y) = X ∩ SubSequences(Y)

returns all the traces in X that are sub-sequences of a trace in Y

αc[S[[M]]](S[[Oc[[M]]]]) = S[[M]]

Oc(M) →֒ P iff ∃ restriction r: αc[S[[M]]](S[[M]]) ⊆ αc[S[[M]]](αr(S[[P]]))

αc(malwaretrace)(programtrace)

21 3 4
malware trace

program trace
1 2 43
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Conservative

[M. Dalla Preda et al. POPL’07]

Suitable abstraction for conservative transformations:
αc[X](Y) = X ∩ SubSequences(Y)

returns all the traces in X that are sub-sequences of a trace in Y

αc[S[[M]]](S[[Oc[[M]]]]) = S[[M]]

Oc(M) →֒ P iff ∃ restriction r: αc[S[[M]]](S[[M]]) ⊆ αc[S[[M]]](αr(S[[P]]))

αc(malware trace)(program trace)

21 3 4
malware trace

1 2 3 4
program trace

A Semantics-Based Approach to Code Obfuscation – p.28



Conservative Transformations

[M. Dalla Preda et al. POPL’07]

The property of being conservative is preserved by composition
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Conservative Transformations

[M. Dalla Preda et al. POPL’07]

The property of being conservative is preserved by composition

Opaque Predicate Insertion

Code Reordering: changes the order in which commands are written
while maintaining the execution order

Semantic NOP insertion: inserts irrelevant commands (es. x := x + 0)

Substitution of equivalent commands
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Example

[M. Dalla Preda et al. POPL’07]

M

L1 : assign(LB,B)→ L2

L2 : assign(LA,A)→ Lc

Lc : cond(A)→ {LT ,LF}

LT : B :=Dec(A)→ LT1

LT1
: assign(succ(B),B)→ LT2

LT2
: assign(succ(A),A)→ LC

LF skip → LB

Oc[[M]]

L1 : assign(LB,B)→ L2

L2 : skip→ L4

Lc : cond(A)→ {LO,LF}

L4 : assign(LA,A)→ L5

L5 : skip→ Lc

LO : PT → {LN,Lk}

LN : X :=X−3→ LN1

LN1
: X :=X+3→ LT

LT : B :=Dec(A)→ LT1

LT1
: assign(succ(B),B)→ LT2

LT2
: assign(succ(A),A)→ Lc

Lk : ...

LF : skip→ LB
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Non-Conservative

[M. Dalla Preda et al. POPL’07]

Identify the set of all possible modifications induced by a
non-conservative transformation and fix a canonical one

Variable renaming

Canonical rename: V1 first variable, V2 second variable...

Apply variable renaming with canonical renaming to αr(S[[P]]) and to
S[[M]]

Verify infection

Complete and Sound

Derive the most concrete preserved property as seen before

Use further abstractions
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Composition

[M. Dalla Preda et al. POPL’07]

Completeness

SMD on α1 is complete for O1 and SMD on α2 is complete for O2

α1 ◦ α2 = α2 ◦ α2

⇒ SMD on α1 ◦ α2 is complete w.r.t. {O1 ◦ O2,O2 ◦ O1}

Soundness

SMD on α1 is sound for O1 and SMD on α2 is sound for O2

α1(X) ⊆ α1(Y)⇒ X ⊆ Y

⇒ SMD on α1 ◦ α2 is sound w.r.t. O1 ◦ O2
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Further Abstraction

[M. Dalla Preda et al. POPL’07]

Interesting States:

∈ αI(S[[M]])

1 2 43

4321

∈ S[[M]]

Let I be the set of interesting states:

M →֒ P if ∃r : αI(S[[M]]) ⊆ αI(αr(S[[P]]))

Example: reordering of independent statements
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Further Abstraction

[M. Dalla Preda et al. POPL’07]

Interesting Behaviours: consider a significant set of behaviours X ⊆ S[[M]]:

M →֒ P if ∃r : X ⊆ αr(S[[P]])

Interesting Actions: consider a significant set of program actions Bad

M →֒ P if ∃r : αa(S[[M]]) ⊆ αa(αr(S[[P]]))

σi = 〈L :Ai → L′,ρi〉

σ1 σ2 σ3 σ4

σ

αa(σ)A2A1 A3
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Proving Soundness/Completeness of MD

[M. Dalla Preda et al. POPL’07]

Identifying the class of obfuscators for which a malware detector is
resilient can be a complex and error-prone task

There exists many obfuscation technique often defined using different
languages

obfuscators and detectors can be expressed on executions traces

express the malware detector as an algorithm on traces

prove soundness and completeness w.r.t. a class of obfuscating
techniques

Case study: Semantics-Aware Malware Detection Algorithm proposed by
[Christodorescu et al. 2005]
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Future work

Malware Detection:

Systematically derive a suitable abstraction αO (Data mining)

Model Checking

Abstraction αO identifies sets of program traces

Express such set of traces as formulae in some linear-branching
temporal logic

Program semantics is in general not computable, what happens when
considering CFG or dependency graphs?

Investigate code obfuscation composition

Semantic Obfuscation

Given an attacker ϕ derive an obfuscation (possibly the simplest) able to
defeat it.
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Future Work

Opaque Predicates Detection

Investigate the composition of opaque predicates

Investigate a wider class of opaque predicates

Use complex abstract domain to design opaque predicates (Polyhedra)
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Brute Force Detection

[M. Dalla Preda et al. AMAST’06]

Example: ∀x ∈ Z : 2 mod (x + x) is decomposed into x and x + y

TIME 8,83 sec

jump if zero

z = x+ y

...

T F

cond z%2

y = x

x,y= 216

x= 216

z= 216

16-bit x86 environment: 3 instructions and each variable: x = 216

Time 8.83 seconds

Hybrid Static-Dynamic attack is time consuming
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Abstract Detection

[M. Dalla Preda et al. AMAST’06]

∀x ∈ Z : 2 mod (x + x)

Abstract domain (Attacker): Parity =
{

Z, even, odd ,∅
}

y = x

jump if zero

z = x + y

...

T F

cond z%2

x= even,odd

z= even,odd

x,y= even,odd
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Abstract Detection Results

[M. Dalla Preda et al. AMAST’06]

SPECInt2000 benchmarks obfuscated with:
∀x ∈ Z : 2 mod (x2 + x) and ∀x ∈ Z : 2 mod (x + x)

Hybrid static-dynamic attack 8.83 sec to deobfuscate one opaque predicate
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Example

Let ⊥ denote the undefined function. αc[αe(S[[M]])](αe(S[[M]])) is given by:

(⊥,⊥)

((B ; LB),⊥)

((B ; LB, A ; LA),⊥)2

((B ; LB, A ; LA), (ρ(B)← Dec(A)))

((B ; succ(m(ρ(B)), A ; LA), (ρ(B)← Dec(A)))

((B ; succ(m(ρ(B)), A ; succ(m(ρ(A)))), (ρ(B)← Dec(A)))

...
while αe(S[[Oc(M)]]) given by:

(⊥,⊥)

((B ; LB),⊥)2

((B ; LB, A ; LA),⊥)5

((B ; LB, A ; LA), (ρ(X)← X + 3))

((B ; LB, A ; LA), (ρ(X)← X + 3, ρ(X)← X − 3))

((B ; LB, A ; LA), (ρ(B)← Dec(A)))

((B ; succ(m(ρ(B)), A ; LA), (ρ(B)← Dec(A)))

((B ; succ(m(ρ(B)), A ; succ(m(ρ(A)))), (ρ(B)← Dec(A)))

...
Thus
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Comparing attackers

⊤

id
id

⊤

R
PT (ϕ) = R

PT (ψ))

R
PT

2

(ϕ)

R
PT

1

(ϕ)

ψ

ϕ

ϕ

PT obstructs ψ more than ϕ

PT1 is more efficient in obstructing the attacker ϕ than PT2
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Reordering of independent statements

independent commands

Cj;Ci is equivalent to Ci;Cj
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Reordering of independent statements

independent commands

Cj;Ci is equivalent to Ci;Cj

C1C1

C2
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C2

C3
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Collberg’s Definition

[Collberg POPL’98]

Let T be a transformation of a source program P into a target program P ′. T is
an obfuscating transformation if P and P ′ have the same observational
behaviour. More precisely in order for T to be a legal obfuscating
transformation the following conditions must hold:

If P fails to terminate or terminates with an error condition, then P ′ may or
may not terminate;

Otherwise, P ′ must terminate and produce the same output as P.
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Barak et al. Definition

[Barak et al. CRYPTO’01]

A probabilistic algorithm O is a TM obfuscator if the following conditions hold:

functionality: For every TM M, the string O(M) describes a TM that
computes the same function as M;

polynomial slowdown: The description length and running time of O(M)

are at most polynomially larger than that of M. That is, there exists a
polynomial p such that for every TM M, |O(M)| ≤ p(|M|), and if M halts in
t steps on some input x, then O(M) halts within p(t) steps on x;

virtual black-box property:anything one can efficiently compute from the
obfuscated program, one should be able to efficiently compute given just
oracle access to the program (oracle says the input-output behaviour)
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Relation with Signature Matching

P = ℘(C), malware signature S ⊆M

syntactic test: S ⊆ P

αs(S[[M]]) = S[[S]]

semantic test: ∃r : αs(S[[M]]) ⊆ αr(S[[P]])

Proposition: Semantic and syntactic test are equivalent

Semantic test corresponds to SMD when S = M

All the results still hold if considering abstraction αs(S[[M]])
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Model Checking

[Detecting Malicious Code by Model Checking, Kinder et al. 2005]

Logic CTPL (Computation Tree Predicate Logic), extension of CTL:
p(x1...xn) where xi are free variable in universe U or constants

“In the code there exists a mov instruction that loads the constant 937 into
some register, later the value contained in this register is always pushed
into the stack”:

∃rEF(mov(r, 937) ∧ AF(push(r)))

Experimental results: carefully written CTPL specifications can apply to
several families of worms

Replace x86 instructions predicated with abstracted forms that capture
their operational semantics
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Why Galois Connections?

?
0− 0+

℘(Z)

. . . 1 . . .

. . . . . .

∅

℘(Z)

∅

{−1,−3,−4} . . . {2, 3, 5}

0
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Why Galois Connections?

0

0− 0+

℘(Z)

. . . 1 . . .

. . . . . .

∅

℘(Z)

∅

{−1,−3,−4} . . . {2, 3, 5}

0

best correct representation of a concrete element in the abstract domain

A Semantics-Based Approach to Code Obfuscation – p.49



Why Galois Connections?

Z
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∅

0
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0

6= 0
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compare abstractions
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