

Attack Model: Graph based Attack Representation and Taxonomy

Vasily Desnitsky and Igor Kotenko

Computer Security Research Group, St. Petersburg Institute for Informatics and Automation of Russian Academy of Sciences

RE-TRUST Workshop, December 19-20, 2006

Contents

- 1. Introduction
- 2. Graph based attack representation
- 3. An example of program tampering attack
- 4. Advantages of suggested attack representation
- 5. Estimation of attack realization time
- 6. Preliminary attack model taxonomy
- 7. Conclusion

Introduction

- It is important to find a formal presentation of attack
- Our approach is based on oriented graph representation which uses program state notion and action one
- There are a lot of graph and tree based attack model representations in computer security field. Our model is aimed to take into account ReTrust specific features

Graph based attack representation (1/3)

- Attack is presented by oriented graph
 - Vertexes states of target program
 - Arcs adversary actions on the target program
- Attack model has
 - Initial state an initial untampered program
 - Final state a broken one
- Graph may have two types of branches
 - OR it is sufficient to execute one option only
 - AND it is needed to execute all options

RE-TRUST Workshop, December 19-20, 2006

Graph based attack representation (2/3)

- Program state is described by
 - Program attributes, e.g.
 - (non-), (de-) obfuscated
 - Presence or absence of a secret key in a program
 - Additional objects and data extracted from the program earlier or from outside, e.g.
 - Monitor, signature generator, secret key
 - Modified program parts or modules and modification type

Graph based attack representation (3/3)

- Actions
 - Action description
 - A set of objects which a the subject of action
- Two kinds of actions
 - Modification of program or its part
 - e.g. deobfuscation, code modification, embed debugging process, etc
 - Analysis of program or its part
 - e.g. search of specific code instruction, monitor analysis
- An action may be detailed to some set of sub-actions
 - e.g. concrete reverse engineering techniques, extracting monitor methods, specific modification methods, etc

An example of program tampering attack

RE-TRUST Workshop, December 19-20, 2006

Advantages of suggested attack representation

- Attack representation obviousness
- Demonstration of action relationships In time
 - e.g. possible parallelism of actions
- It helps to estimate computational complexity of an attack fulfillment
- It helps to reveal the way of attack effectiveness, e.g.
 - Parallel execution of several actions
 - To eliminate repeated fulfillment of already executed intermediate computation or same data search

- Estimation of machine time for breaking the certain program component or the execution of some actions
- Human factor

Preliminary attack model taxonomy

- Attack
 - Attack graph
 - program states
 - program attributes
 - additional objects and data
 - actions
 - modifications
 - analysis
 - AND/OR branches
- General attack classification
- Attackenv
- Attacktext
- Attackload
- Attackrun
- Main kinds of attacks
 - Riverse engineering attack
 - Clonning attack
 - Differential analysis attack
 - Separation attack

Conclusion

- In the future:
 - To extend and detail the introduced notions of attack models
 - To create the complete attack model taxonomy
- And in particular
 - To detail the notion of program state
 - To develop methods to estimate computational complexity of attacks
 - How to estimate human factor?