
1

RE-TRUST
Design Alternatives on JVM

Paolo Falcarin
(Politecnico di Torino - Italy)

Trento, December, 19th 2006

paolo.falcarin@polito.it
http://softeng.polito.it/falcarin

Politecnico di Torino

Trento 19° Dec. 2006 2Paolo Falcarin

Tamper-Detection
Tamper-detection goals
♦ Detect malicious modifications to program
♦ Cause the program to fail if modified
Check the executable version itself
♦ E.g., compare program with a hash of itself
Self-checking relies on code checkers
♦ whose position is hidden in the application
♦ whose behavior is often obfuscated

2

Politecnico di Torino

Trento 19° Dec. 2006 3Paolo Falcarin

Issues on self-checking
However, no technique can prevent
all attacks
♦Goal is to increase the cost for the

attacker
Current self-checking techniques:
♦bundled within the application
♦can be identified and disabled
♦Nobody will notice!!!

Politecnico di Torino

Trento 19° Dec. 2006 4Paolo Falcarin

RE-TRUST approach
Two main benefits:
♦remote verification that self-checking

has been performed
♦continuous replacement of self-

checking code
2 Prototypes implemented:
♦Using Dynamic AOP
♦Using JVMTI

3

Politecnico di Torino

Trento 19° Dec. 2006 5Paolo Falcarin

Prototype(s)

UNTRUSTED

Chat Server

SERVICE

ENTRUSTER

TFlow Server
Chat Client

Politecnico di Torino

Trento 19° Dec. 2006 6Paolo Falcarin

Prototype 1: Dynamic Aspect

Dyn AOP runtime
Chat

Server

replace

TagMsg

Aspect
Factory

load

Tag
Checker

Aspect
Manager
Aspect
Manager

TrustedFlowChat
Client

Code Checker
and
Tag Generator
(aspect)

Untrusted

environment

4

Politecnico di Torino

Trento 19° Dec. 2006 7Paolo Falcarin

Aspect-Oriented Programming

Politecnico di Torino

Trento 19° Dec. 2006 8Paolo Falcarin

Aspect Weaving
Aspect is “extra-code” that
modularizes the implementation of
a crosscutting concern
The final code is obtained by
weaving base code and aspect code
♦At compile time with an aspect

compiler
♦At run time with a dynamic-AOP JVM

5

Politecnico di Torino

Trento 19° Dec. 2006 9Paolo Falcarin

Why AOP ?
Aspect Oriented Programming (AOP)

Modularizes self-checking code
Aspect has a privileged view on the
whole code
Trusted Tag generator in dynamic
aspect
♦ It can be continuously updated
Client code is NOT aspect-aware

Politecnico di Torino

Trento 19° Dec. 2006 10Paolo Falcarin

Dynamic AOP with PROSE
PROSE is an extension to standard
JVM with dynamic AOP features
Aspects can be remotely
added/removed at run-time
In PROSE terminology:
♦An Aspect is a Java class
♦ It contains many Crosscut objects
♦A crosscut is a pointcut-advice pair

6

Politecnico di Torino

Trento 19° Dec. 2006 12Paolo Falcarin

public Crosscut tagGenerator = new MethodCut() {
public void METHOD_ARGS(PrintWriter p, String msg) {
StringBuffer tag = new StringBuffer(msg);
tag.append(crypt(counter, key));
tag = hash(tag);
p.println(tag);
p.println(counter); p.flush();
counter++;
}
protected PointCutter pointCutter() {
PointCutter socket =

Within.method("println").AND(type("PrintWriter"));
return Executions.before().AND(socket);

} };

The Tag Generator Crosscut

Politecnico di Torino

Trento 19° Dec. 2006 13Paolo Falcarin

Bytecode checking
Using BCEL Java library
Extract the actual method signature
and class name.
Keyed-hash of bytecode method is
compared with the original one
If they differ the key is nullified
=>The tag generator sends wrong tags
=>The server detects tampering

7

Politecnico di Torino

Trento 19° Dec. 2006 14Paolo Falcarin

public Crosscut bytecodeChecker = new MethodCut() {
public void METHOD_ARGS(ANY x, REST pp) {

String className =
thisJoinPoint().getThis().getClass().getName();

String method = thisJoinPoint().getSignature();

if (!checkBytecode(className, method))
key=null;

}
protected PointCutter pointCutter() {
return Executions.before().

AND(Within.packageTypes("it.polito.chat.*"));
} };

The Bytecode Checker Crosscut

Politecnico di Torino

Trento 19° Dec. 2006 15Paolo Falcarin

Sandbox
Java "sandbox" restricts the operations
an application can do.
♦ protecting from hostile programs

downloaded from un-trusted servers
We face with the dual problem:
♦ The trusted aspects sent by the trusted

server cannot trust the environment they
will be deployed in.

♦ Deployed aspect forbids many “dangerous”
activities to the running application.

8

Politecnico di Torino

Trento 19° Dec. 2006 16Paolo Falcarin

public Crosscut shield = new MethodCut() {
public void METHOD_ARGS(ANY x, REST pp) {

key=null;
}
protected PointCutter pointCutter() {
PointCutter native = Within.method(NATIVE_MODIFIER);
PointCutter fork =

Within.method("exec").AND(type("java.lang.Runtime"));
PointCutter loader = Within.subType("java.lang.ClassLoader")).

AND(NOT(Within.type(“java.security.SecureClassLoader”));
return Executions.before().AND(native.OR(fork).OR(loader));

}
};

The Sandbox Crosscut

Politecnico di Torino

Trento 19° Dec. 2006 17Paolo Falcarin

Prototype 2: JVMTI
Client

(e.g. Chat Client)
+

Execution monitor

Code Checker
(agent)

Tag Generator
(agent)

Server
(e.g. Chat Server)

+
Tag checker

Agent
managerauth

Msg Tag

update

update

CLIENT SERVER

9

Politecnico di Torino

Trento 19° Dec. 2006 18Paolo Falcarin

Prototype 2 (JVMTI)
Execution interception with JVMTI
♦ Run JVM (Java 5) in agent mode
♦ An agent plugged-in using the JNI interface
♦ It downloads module libraries at run-time

Transparent tag insertion
♦ Call to socket write are intercepted
♦ And Data buffer is tagged

Method entry is monitored
♦ Method byte-code is continuously verified

With JVMTI also program’s memory can be
accessed

Politecnico di Torino

Trento 19° Dec. 2006 19Paolo Falcarin

Tag generation
Tag is uid:counter:sign:plainmsg
♦ Where uid is ip:port
Counter-mode block cipher
♦ Crypt: Blowfish
♦ Hash: sha-1

Crypt

Concat

Hash

counter

key

msg

signature

10

Politecnico di Torino

Trento 19° Dec. 2006 20Paolo Falcarin

Integrity check
Module contains
♦ List of crypto hashes (each method)
♦ Symmetric key

Keyed hash recomputed each time a
method is called
Hash compared with “good” copy

Politecnico di Torino

Trento 19° Dec. 2006 21Paolo Falcarin

Threats: Disablement
Dynamic Module allows:
♦integrity-checking code better
modularized

♦Clearly separated from client
−It is inserted at run-time

Disabling checking
=>stops tag generation
=>tampering detected by TFC
=>server can block untrusted client

11

Politecnico di Torino

Trento 19° Dec. 2006 22Paolo Falcarin

Threats: Replacement
Discovery of secret key…to create
correct tags
Replace aspect to disable checking but
sending correct tags:
♦Attacker must obtain module code

(coming at run-time)
♦Replacement must be applied before

TTG expires
New module checks previous one

Politecnico di Torino

Trento 19° Dec. 2006 23Paolo Falcarin

Safety features of the JVM
Unspecified memory layout: JVM stores
Application in different data areas
♦ Java stacks (one for each thread)
♦ A method area where bytecodes are stored
♦ A heap, where objects created are stored
When the JVM loads a class file, it decides
where to store the bytecodes.
An attacker cannot predict where the
class’ data will be stored
The way in which a JVM lays out its inner
data depends on JVM implementation

12

Politecnico di Torino

Trento 19° Dec. 2006 24Paolo Falcarin

Threats: debuggers
Dynamic AOP relies on debugger
Prototype2 relies on JVMTI
In both cases attackers cannot run
client in debug mode
♦ Is this enough to thwart them?
Attacker should be smart to
discover the checker behavior
♦Difficult access to mobile code
♦Automating this attack before a new

module arrives is not trivial

Politecnico di Torino

Trento 19° Dec. 2006 25Paolo Falcarin

Open issues: platform
All software-based techniques
rely on an un-trusted external
platform:
♦ the JVM, the O.S., the hardware.
This is a problem for ALL
integrity-checking techniques
Our Prototype could (?) check
authenticity of:
♦underlying VM
♦O.S. & HW configuration

13

Politecnico di Torino

Trento 19° Dec. 2006 26Paolo Falcarin

Conclusions
The aspect/agent checker is:
♦Not bundled within application
♦ Its strategy is not visible through

static code analysis
♦Easily configurable
♦Can check previously installed ones
♦Could check the platform itself

Politecnico di Torino

Trento 19° Dec. 2006 27Paolo Falcarin

Possible Enhancements
Module obfuscation
Module factory
Server authentication
Network protocol design
Measures
O.S. configuration checking
Integration with HW
Hiding key with White-box Cryptography

