Louis Goubin
December 19, 2006

Trento (ltaly)

+An example: RSA

RSA Cryptosystem (1977)

de facto standard of public-key cryptosystems
p, q: primes, n =pq, ed =1 mod (p-1)(g-1),

e, n: public key, —secret key, (factoring, n: 1024 bits)
M: message, M —,2,.....,n-1}.

Encryption: C =M mod n| e:small 2!%+1)

Decryption: M = C¢ mod n | d: large (d>n'?)

Fast Exponentiation

The binary representation of d =d[k-1]2k! + d[k-2]2k2 + ... + d[1]2! + d[0]2°, where d[k-1]=1.

Left-to-right binary method
Input C,n,d

Output C? mod n cubic complexity O((log n)3).
X=C; - we need about 1500 modular
For i=k-2 to 0 multiplications for 1024-bit n,d
on average.
X = X2 mod n;
if d[i]=1, then X=X*C mod n;
Return X

d = 1797693134862315907729305190789024733617976978942306572734300811577326394452091672627716349371404564 77800995856
4863673560357494227785840418926558467439899258695049140360821770965996851973903412635215659390188627764072341203
1668285970266526289737711820513944871376325649575655785893257302729658745304709432808

RSA Decryption using
Chinese Remainder Theorem

M = C9mod n n 23 = 8 time faster

dq =d mod (q-1) /
C,=Cmodq

dp = d mod (p-1)
C,=Cmodp
M, = C,% mod p M, = C % mod q
P q
\ / Garner’s
- N’ 1
M=M_ +pvmodn, v=(M_ -M)p!modq . algorithm

RSA decryption using the CRT can be computed
about 4 times faster than the original decryption.

19/12/2006 gemalto™

RSA with CRT

Algorithm RSA_Decryption_CRT (n=pq)

InPUt Can,p’qadpaanp_inV_q «— | Pre-computation
OUtpUt M avoiding inversion

1: Mp = C9% mod p;

2: Mg = Cd% mod q;

3: v=(Mq- Mp)p_inv_q mod q;
4. M= Mp + pv;

9. Return M

PKCS #1, http://www.rsasecurity.com/rsalabs/pkcs/

+ Timing Attacks

What are Timing Attacks ?

+The term “Timing Attack” was first introduced at CRYPTO'96 in
Paul Kocher's paper

+Few other theoretical approaches without practical
experiments up to the end of 97°

+ Theory was put into practice in early 98’

+Timing attacks belong to the large family of "side channel”
attacks

19/12/2006 gemalto™

What are Timing Attacks ?

+ Principle of Timing Attacks :
= Secret data are processed in the card
= Processing time
— depends on the value of the secret data
— leaks information about the secret data
— can be measured (or at least their differences)

+ Practical attack conditions

= Possibility to monitor the processing of the secret data
= Have a way to record processing times

= Have basic computational & statistical tools

= Have some knowledge of the implementation

19/12/2006

gemalto”

What are

'iming Attacks ?

Start

True @ False

Everything performed unconditionally before the test

A test based on secret data is performed
that leads to a boolean decision

A
Process 2 0 Depending on the boolean condition,
t1 Process 1 the process may be long (t1) or short (t2)
A\
end Everything performed unconditionally after the test
19/12/2006 gemalto™

Timing attack on RSA

+ Timing Attacks: by precisely measuring the time it takes the smartcard to
perform an decryption, Marvin can discover d.

+ “repeated squaring algorithm”, compute C=M?mod N. d=d.d,,
..d
1 0

= Set zequals to Mand C=1. For i=0,...n do:
= ifd=1set C=C"zmod N
= set zequal to Zmod N
At the end, C has the value M mod N
+ To mount attack, Marvin asks the smartcard to generate signatures on a large

number of random messages M;,M,,...M.e Z,; and measure the time T, it takes
to generate each signature.

19/12/2006 gemalto™

Timing attack on RSA

+ Timing Attack

+ If dy=1, smartcard computes Cz=MM? modN and, Otherwise it does not. Let t.
be the time it takes the smart card to compute M;M7? mod N. The t/s differ from

each other and depends on M. Marvin measures them offline.

+ When d;=1, the two ensembles {t} and {T;} are correlated. when d,=0, they
behave as independent random variables. By measuring the correlation,
Marvin can determine dy=1 or 0.

+ Continuing in this way, he can discover d,,ds... and so on.

+ Solutions: 1) add appropriate delay s.t. modular exponentiation always takes a
fixed amount of time. 2) Rivest’s blinding trick.

+ Kocher’'s Power cryptanalysis?

+Power Analysis Attacks

Power Analysis: Basic Principles

+I1CC's Power Consumption leaks information about data processing
u Power Consumption = f(processing, data)

+Deduce information about secret data and processing
- empirical methods
. statistical treatment

+Example : reverse engineering of an algorithm
= The algorithm structure
= Electrical signatures

+Single Power Analysis (SPA)

= Attack against the DES key schedule
= Attack against RSA

19/12/2006

gemalto”

Power Analysis Tools

/- 29,
e O
2L gt
N /

gemalto”

Side Channel Attacks

Left-to-right binary method
Input M,n,d
Output MY mod n

X=M;
For i=k-2 to O /

X = X*X mod n;
if d[1]=1, then X=X*M mod n;

The time or the power to execute
Squaring and Multiplication are different
idefchannel information).

Return X

|

J me”\ﬁ«f W

19/12/2006

/

w P‘ memwm J{ }f j*]ﬁ ’ y(”} W'm mﬂ]w MWM"

=
—_—

SPA attack on RSA

+ basic “square and multiply” algorithm
+ exponent bits scanned from MSB to LSB (left to right)

Let k = bitsize of d (say 1024)

Lets=m

Fori= k-2 down to 0 Example : S = m° = m1001b
int(MSB1) s=m
round 2 (bit 0) s = m?

Lets=s*smodn (SQUARE)

If (bitiofd)is 1 then _ o
Lets = s*m mod n (MULTIPLY) found1 (bit0) s=(m*)"=m

End it round 0 (bit1) s = (m*)2* m =
9
End for m

SPA attack on RSA

6 9 1 5 B F 9 4 A
10001 10100 001010 1101 11 1 1 1100 D 10010 10

2 [E C
00701 1 101
il

NNl
Wi i, }Www Ww i WWW#N”“ | MHW”W” l Wﬁrﬁ

i

Key value :|2E G6 91 5B F94A

Differential Power Analysis

+required number of acquisitions : 500 to 10,000
+prerequisite

= physical access to the card under attack

= access to either plaintext M or ciphertext C

= varying plaintext and constant key
= algorithm specifications (MANDATORY)

+cost
= A few dollars (to a few thousands)
= A few days training
= Average good level of expertise
= Chip and implementation independent

19/12/2006

gemalto”

Differential Power Analysis

+description :
= choose a subset (subK;) of n bits of K

K

v

“suok, 1

= perform a statistical test for each possible value of a subK;

////

= Choose the best guess

= Iterate on all possible subK's

Differential Power Analysis

+DPA statistical test :
— abatch of data acquisitions for various messages M,

i s

— the qgrresponding plaintext M, or the cipher text G, k
dfdsffb fdgexv Iklkjlsdq
— the values of the subK;
M, M, M,
o 1 2 2"-1

Differential Power Analysis

+ DPA statistical test :

= selection function D ;

— sort curves according to M, or C, for each value of
a subk

— output = image of a target bit of the algorithm

Key Message
|
L v v
process process process
subKi é
target bit ————— process
—>

Differential Power Analysis
+ data processing for a value x of a subK; :

Y
T = i
], N - o

M, 1
MO

\4

\4

<

Average

Differential Power Analysis
+ Choosing the right guess

Y Y

on. 1

Differential Power Analysis
+ iterate on all possible sub-keys :

i n1 n 1 n 1 n

K

~N_ O~ U ~ U ~
subK; subK, subK; subK,

+ find the remaining bits through exhaustive search

K

Differential Power Analysis
+ How does it work ?

W)

]
_— |
~ |

Average for subKey;,

DPA peak

Difference for subKey;, |

)

Differential Power Analysis

= right subkK;

T

Counter-measures

+Add noise
+Scramble power consumption or stabilize it

+Randomize all sensitive data variables with a fresh mask for every
execution of an algorithm

4+ Randomize, randomize, randomize ...

— Secret keys

— Messages

— Private exponents
— Bases

— Moduli

19/12/2006 gemalto™

Conclusion on Power Analysis Attacks

+ Naive smartcard implementations of cryptosystems can leak
secret data.

+ Power Analysis Attacks
= — target symmetric and asymmetric cryptosystems
= — practical, ‘fast’ and cheap
= — difficult to circumvent
= — countermeasures may impact efficiency.

19/12/2006 gemalto™

+ Executing external code

Need for a Tamper-Proof Environment

+ Many emerging applications require physical security as well as
conventional security against software attacks
= Digital Rights Management (DRM): illegal copies of protected digital content
= Mobile agent applications: sensitive electronic transactions are performed on
untrusted hosts
+ Conventional approach: build processing systems containing
processor and memory elements
= Within a private and tamper-proof environmnent
= Typically implemented using active intrusion detectors

19/12/2006 gemalto™

Conventional Smart Cards

+ 8, 16 or 32-bit CPU
= Typically 10 MHz

+ RAM: 2-8 Kbytes ¥ | & |
+ ROM: 100-200 Kbytes | |

= (Contains the code

+ E2PROM: 32-128 Kbytes
= (Contains the data

+ Optional: =
= Random Noise Generation, sensors, seculy 0yIC

= Modular Exponentiations Unit or Co-processor
= Random Generator

System) Storage)

internal Bussystem

LROM RAM EERPRO
(Operating (temp. Operating {Application

g
=
=]
L&)
7
8
<

19/12/2006 gemalto™

Limitations of Conventional Solutions

+ Providing high-grade tamper-resistance can be quite expensive

+ System computation power is limited by the components that
can be enclosed in a small tamper-proof package

= The applications of these systems are limited to perform a small number of
security critical operations

+ These processors are not flexible
= E.g. their memory or I/O cannot be upgraded easily

19/12/2006 gemalto™

Emerging New Solutions

+ Just requiring tamper-resistance for a single processor chip

would significantly enhance the amount of secure computing
power

+ Makes possible applications with heavier computation
requirements

+ Secure processors have been recently proposed, where
= only a single processor chip is trusted

= the operations of all other components including off-chip memory are
verified by the processor

19/12/2006 gemalto™

Private Tamper Resistant (PTR) Environment

+ To prevent an attacker from tampering with the off-chip
untrusted memory, two main primitives have to be developed.
+ Memory integrity verification

The processor monitors the memory from any form of corruption

= |If any is detected, then the processor aborts the tasks that were
tampered with to avoid producing incorrect results

+ Memory Encryption
= Ensures the privacy of data stored in the off-chip memory

19/12/2006 gemalto™

Secure Computing Model

Security
Kernel

Untrusted Part of O/S

Malicious
Software

Physical
Attacks Software

* Attacks

: & ol Untrusted
: Cache Encryption Memory
Registers I

I Integrity
Secure Context Verification
Manager
Drivate I —s] SCM
rivate Ke _
y Table o [Gooay g

Processor

19/12/2006

N

Software,
Physical

/ Attacks

2]
-~

gemalto”™

Secure code execution

+ Taken from “Tamper-Resistant Whole Program Partitioning”
Zhang, Pande & Valverde, 2003 ACM SIGPLAN conference on
Language, compiler, and tool support for embedded systems

= Download application via network from server
= A program is partitioned.
= Why partition?

Smart Card Mobile Code Server

Next Partition Request

Analysis g Partitioning

Requested Partition

Problem: Program Partitioning

+ Easiest way to partitioning
= Partitioning by basic blocks

+ However, simple partitioning may reveal control flow, which is
dangerous for security

Problem: Program Partitioning
+ RSA private-key operation

computing R = y*mod n

ie 5 =]

for k=U upto k-1
16 (bit k of 2y a5 | then
et 1. = (5 y) mod 1y

else

let v = o

o %
et 5 8 o ined

end for

wemun H

Partition transmission sequence: IF > ELSE - IF 2> |IF &> ELSE
We can guess key x as 10110 or 01001

IIIIIIIIHHE%HHgIIEH%HH%H%HIIIIIIIIIII

Safe Partitioning

+ Safe partitioning
= Partitioning that does not reveal control flow.
= How to partition?
= How to transmit through network?
= How to manage partitions on smart card?

Partition sequence through network

B1 can be guessed as control block

This is not a safe partitioniné.

19/12/2006 gemalto™

Safe Partitioning

+ Exception: a function call
Function F1

v

Partition sequence through network

B21.B22, B23, |

Same sequence as previous one

But, this partitioning is not dangerous.

19/12/2006 gemalto™

Safe Partitioning
Same
B21,B22, B23,

T~

Different

1,B12, ...

+ Safe partitioning
= Do not generate this kind of sequence through network
= Except previous case

Code Partitioning

+ Partition management policy in smart card
= Keep nothing received policy
= Discard partition after its execution (does not cached)
= To avoid problem when there is a long function call chain

— If we cache partitions that are to be executed when a function returns, ...

+ Code partitioning algorithm

= For non-recurring function
— Executed at most once (e.g., main function, initialization func.,)

= For recurring function
— Executed multiple times

19/12/2006

gemalto”

ioning

Code Part

Ion

funct

non-recurring

A

ion

funct

-recurring

A non

19/12/2006

Code Partitioning

+ For recurring functions

= Step 1: If there is loop > merge loop body
— Same reason for non-recurring function
— Then CFG becomes acyclic

= Step 2: If CFG does not contain loop (= acyclic)
— Not safe
— Since they are executed multiple times

— Possible sequence A recurring function
B1,B2, ..., B1,B3, ...

19/12/2006

Code Partitioning

+ If CFG in recurring function is acyclic

= Server transmits whole partitions in one of the topological order (regardless of
control flow)

= Smart card discards the unnecessary partitions

Horizontal Ordering

B1, B2, B4, B4, B4, BS, ..., B1, B2,)83, 34, BS5, B6
g g _/ — —~ _

Same when seen by an attacker

19/12/2006

Improving Performance

+ Too many communication overhead

+ Solutions

= Merging adjacent partitions
— Greedy algorithm
— Merge until sum of partitions exceed predefined limit

= Function caching
— Do not discard function after it is executed
— Dynamic cache eviction (e.g., LRU) is not acceptable (high overhead)
— —>» Static caching by compiler

19/12/2006 gemalto™

