
Secure computations using smart cards

Louis Goubin

December 19, 2006

Trento (Italy)

1/11/2007Reference, date 219/12/2006

�An example: RSA

1/11/2007Reference, date 319/12/2006

RSA Cryptosystem (1977)

p, q: primes, n = pq, ed = 1 mod (p-1)(q-1),

e, n: public key, d: secret key, (factoring, n: 1024 bits)

M: message, M �{0,1,2,….,n-1}.

Encryption: C = Me mod n

de facto standard of public-key cryptosystems

Decryption: M = Cd mod n d: large (d>n1/2)

e: small (216+1)

1/11/2007Reference, date 419/12/2006

Fast Exponentiation

Left-to-right binary method

Input C, n, d

Output Cd mod n

X= C;

For i=k-2 to 0

X = X2 mod n;

if d[i]=1, then X=X*C mod n;

Return X

cubic complexity O((log n)3).
- we need about 1500 modular

multiplications for 1024-bit n,d

on average.

The binary representation of d =d[k-1]2k-1 + d[k-2]2k-2 + … + d[1]21 + d[0]20, where d[k-1]=1.

d = 179769313486231590772930519078902473361797697894230657273430081157732639445209167262771634937140456477800995856
4863673560357494227785840418926558467439899258695049140360821770965996851973903412635215659390188627764072341203

1668285970266526289737711820513944871376325649575655785893257302729658745304709432808

1/11/2007Reference, date 519/12/2006

RSA Decryption using

Chinese Remainder Theorem

nM = Cd mod n

p

dp = d mod (p-1)

Cp = C mod p

Mp = Cp
dp mod p

dq = d mod (q-1)

Cq = C mod q

Mq = Cq
dq mod q

q

n
M = Mp + pv mod n, v = (Mq - Mp) p-1 mod q

RSA decryption using the CRT can be computed

about 4 times faster than the original decryption.

Garner’s

algorithm

23 = 8 time faster

1/11/2007Reference, date 619/12/2006

RSA with CRT

��������	
���
����������
���
������
�����
���������������
���
�
������

!"

 �
�
��� 	��
�#

$"

 �
�
��� 	��
�#
%"
 �
�� � & ��
�
���
�
	��
�#
'"

�
 �
(
��#
)"

������

PKCS #1, http://www.rsasecurity.com/rsalabs/pkcs/

Pre-computation

avoiding inversion

1/11/2007Reference, date 719/12/2006

�Timing Attacks

1/11/2007Reference, date 819/12/2006

What are Timing Attacks ?

�The term “Timing Attack” was first introduced at CRYPTO'96 in
Paul Kocher's paper

�Few other theoretical approaches without practical
experiments up to the end of 97’

�Theory was put into practice in early 98’

�Timing attacks belong to the large family of "side channel"
attacks

1/11/2007Reference, date 919/12/2006

What are Timing Attacks ?

�Principle of Timing Attacks :

� Secret data are processed in the card

� Processing time

– depends on the value of the secret data

– leaks information about the secret data

– can be measured (or at least their differences)

�Practical attack conditions

� Possibility to monitor the processing of the secret data

� Have a way to record processing times

� Have basic computational & statistical tools

� Have some knowledge of the implementation

1/11/2007Reference, date 1019/12/2006

Process 1
Process 2

Start

Decision

t2
t1

end

What are Timing Attacks ?

�

True False

Everything performed unconditionally before the test

A test based on secret data is performed

that leads to a boolean decision

Depending on the boolean condition,

the process may be long (t1) or short (t2)

Everything performed unconditionally after the test

1/11/2007Reference, date 1119/12/2006

Timing attack on RSA

� Timing Attacks: by precisely measuring the time it takes the smartcard to

perform an decryption, Marvin can discover d.

� “repeated squaring algorithm”, compute C=Md mod N. d=dndn-

1...d0

� Set z equals to M and C=1. For i=0,...n do:

� if di=1 set C=C*z mod N

� set z equal to z2 mod N

At the end, C has the value Md mod N

� To mount attack, Marvin asks the smartcard to generate signatures on a large

number of random messages M1,M2,...Mk∈ZN
* and measure the time Ti it takes

to generate each signature.

1/11/2007Reference, date 1219/12/2006

Timing attack on RSA

� Timing Attack

� If d1=1, smartcard computes Cz=MM2 modN and, Otherwise it does not. Let ti
be the time it takes the smart card to compute MiMi

2 mod N. The ti’s differ from

each other and depends on Mi. Marvin measures them offline.

� When d1=1, the two ensembles {ti} and {Ti} are correlated. when d1=0, they

behave as independent random variables. By measuring the correlation,

Marvin can determine d1=1 or 0.

� Continuing in this way, he can discover d2,d3... and so on.

� Solutions: 1) add appropriate delay s.t. modular exponentiation always takes a

fixed amount of time. 2) Rivest’s blinding trick.

� Kocher’s Power cryptanalysis?

1/11/2007Reference, date 1319/12/2006

�Power Analysis Attacks

1/11/2007Reference, date 1419/12/2006

Power Analysis: Basic Principles

�ICC's Power Consumption leaks information about data processing

� Power Consumption = f(processing, data)

�Deduce information about secret data and processing

� empirical methods

� statistical treatment

�Example : reverse engineering of an algorithm

� The algorithm structure

� Electrical signatures

�Single Power Analysis (SPA)

� Attack against the DES key schedule

� Attack against RSA

1/11/2007Reference, date 1519/12/2006

Power Analysis Tools

5V

Ω

1/11/2007Reference, date 1619/12/2006

Side Channel Attacks

The time or the power to execute

Squaring and Multiplication are different

(side-channel information).

Left-to-right binary method

Input M, n, d

Output Md mod n

X= M;

For i=k-2 to 0

X = X*X mod n;

if d[i]=1, then X=X*M mod n;

Return X

Cited from Clavier et. al, Universal exponentiation

algorithm: A first step towards provable SPA-resistance,

CHES 2001, LNCS 2162, pp. 300-308, 2001

1/11/2007Reference, date 1719/12/2006

� basic “square and multiply” algorithm

� exponent bits scanned from MSB to LSB (left to right)

L e t k = b its ize o f d (sa y 1 0 2 4)

L e t s = m

F o r i = k -2 d o w n to 0

 L e t s = s* s m o d n (S Q U A R E)

 I f (b it i o f d) is 1 th en

 L e t s = s* m m o d n (M U L T IP L Y)

 E n d if

E n d fo r

Example : s = m9 = m1001b

init (MSB 1) s = m

round 2 (bit 0) s = m2

round 1 (bit 0) s = (m2)2 = m4

round 0 (bit 1) s = (m4)2 * m =
m9

SPA attack on RSA

1/11/2007Reference, date 1819/12/2006

Key value : 2E C6 91 5B F9 4A

2

0010

E

1 1 10

C

1 100

6

0 1 10

9

100 1

1

000 1

5

0 10 1

B

10 1 1

F

1 1 1 1

9

100 1

4

0 100

A

10 10

SPA attack on RSA

1/11/2007Reference, date 1919/12/2006

Differential Power Analysis

�required number of acquisitions : 500 to 10,000

�prerequisite

� physical access to the card under attack

� access to either plaintext M or ciphertext C

� varying plaintext and constant key

� algorithm specifications (MANDATORY)

�cost

� A few dollars (to a few thousands)

� A few days training

� Average good level of expertise

� Chip and implementation independent

1/11/2007Reference, date 2019/12/2006

�description :

� choose a subset (subKi) of n bits of K

� perform a statistical test for each possible value of a subKi

� Choose the best guess

� Iterate on all possible subKi's

Differential Power Analysis

2n-10 1 2

2

1 n

K

subKi

1/11/2007Reference, date 2119/12/2006

Differential Power Analysis
�DPA statistical test :

– a batch of data acquisitions for various messages Mk

– the corresponding plaintext Mk or the cipher text Ck

– the values of the subKi

0 1 k

2n-10 1 2

lklkjlsdqfdgcxvdfdsffb

M0 M1 Mk

1/11/2007Reference, date 2219/12/2006

Differential Power Analysis

� DPA statistical test :

� selection function D :

– sort curves according to Mk or Ck for each value of
a subKi

– output = image of a target bit of the algorithm

Message

processprocess

process

Key

process

subKi

target bit

1/11/2007Reference, date 2319/12/2006

Differential Power Analysis
� data processing for a value x of a subKi :

Average

D

x

n

lklkjlsdq
fdgcxv

1
0

dfdsffb

M0

Mn

M1

-

1/11/2007Reference, date 2419/12/2006

Differential Power Analysis
� Choosing the right guess

0 1 2n-1

1/11/2007Reference, date 2519/12/2006

Differential Power Analysis
� iterate on all possible sub-keys :

� find the remaining bits through exhaustive search

subK2subK1 subK4

1 n

K

subK3

1 n1 n1 n

K

1/11/2007Reference, date 2619/12/2006

Differential Power Analysis
� How does it work ?

D = 1

D = 1

Average for subKeyi

D = 0

D = 0

Difference for subKeyi

DPA peak

Average for subKeyi

1/11/2007Reference, date 2719/12/2006

Differential Power Analysis

� wrong subKi

� right subKi

1/11/2007Reference, date 2819/12/2006

�Add noise

�Scramble power consumption or stabilize it

�Randomize all sensitive data variables with a fresh mask for every

execution of an algorithm

�Randomize, randomize, randomize …

– Secret keys

– Messages

– Private exponents

– Bases

– Moduli

Counter-measures

1/11/2007Reference, date 2919/12/2006

Conclusion on Power Analysis Attacks

� Naïve smartcard implementations of cryptosystems can leak
secret data.

� Power Analysis Attacks

� – target symmetric and asymmetric cryptosystems

� – practical, ‘fast’ and cheap

� – difficult to circumvent

� – countermeasures may impact efficiency.

1/11/2007Reference, date 3019/12/2006

�Executing external code

1/11/2007Reference, date 3119/12/2006

Need for a Tamper-Proof Environment

� Many emerging applications require physical security as well as
conventional security against software attacks
� Digital Rights Management (DRM): illegal copies of protected digital content

� Mobile agent applications: sensitive electronic transactions are performed on

untrusted hosts

� Conventional approach: build processing systems containing
processor and memory elements

� Within a private and tamper-proof environmnent

� Typically implemented using active intrusion detectors

1/11/2007Reference, date 3219/12/2006

Conventional Smart Cards

� 8, 16 or 32-bit CPU

� Typically 10 MHz

� RAM: 2-8 Kbytes

� ROM: 100-200 Kbytes

� Contains the code

� E2PROM: 32-128 Kbytes
� Contains the data

� Optional:

� Random Noise Generation, sensors, security logic

� Modular Exponentiations Unit or Co-processor

� Random Generator

1/11/2007Reference, date 3319/12/2006

Limitations of Conventional Solutions

� Providing high-grade tamper-resistance can be quite expensive

� System computation power is limited by the components that
can be enclosed in a small tamper-proof package

� The applications of these systems are limited to perform a small number of

security critical operations

� These processors are not flexible
� E.g. their memory or I/O cannot be upgraded easily

1/11/2007Reference, date 3419/12/2006

Emerging New Solutions

� Just requiring tamper-resistance for a single processor chip
would significantly enhance the amount of secure computing
power

� Makes possible applications with heavier computation
requirements

� Secure processors have been recently proposed, where

� only a single processor chip is trusted

� the operations of all other components including off-chip memory are

verified by the processor

1/11/2007Reference, date 3519/12/2006

Private Tamper Resistant (PTR) Environment

� To prevent an attacker from tampering with the off-chip
untrusted memory, two main primitives have to be developed.

� Memory integrity verification

� The processor monitors the memory from any form of corruption

� If any is detected, then the processor aborts the tasks that were

tampered with to avoid producing incorrect results

� Memory Encryption
� Ensures the privacy of data stored in the off-chip memory

1/11/2007Reference, date 3619/12/2006

Secure Computing Model

1/11/2007Reference, date 3719/12/2006

Secure code execution

� Taken from “Tamper-Resistant Whole Program Partitioning”
(Zhang, Pande & Valverde, 2003 ACM SIGPLAN conference on
Language, compiler, and tool support for embedded systems)

� Download application via network from server

� A program is partitioned.

� Why partition?

Mobile Code ServerSmart Card

Program

Analysis & Partitioning

Requested Partition

Next Partition Request

Partition Manager

Loader/ Linker

Execute

1/11/2007Reference, date 3819/12/2006

Problem: Program Partitioning

� Easiest way to partitioning

� Partitioning by basic blocks

� However, simple partitioning may reveal control flow, which is
dangerous for security

1/11/2007Reference, date 3919/12/2006

Problem: Program Partitioning

� RSA private-key operation

let s0 = 1

for k=0 upto k-1

if (bit k of x) is 1 then

let rk = (sk * y) mod n

else

let rk = sk

let sk+1 = rk
2 mod n

end for

return rw-1

computing R = yx mod n

We can guess key x as 10110 or 01001

Initialization

Loop entry

IF part ELSE part

Loop end

Return

bit is 1 bit is 0

Partition transmission sequence: IF � ELSE � IF � IF � ELSE

1/11/2007Reference, date 4019/12/2006

Safe Partitioning

� Safe partitioning

� Partitioning that does not reveal control flow.

� How to partition?

� How to transmit through network?

� How to manage partitions on smart card?

…, B1, B3, …., B1, B2, …

B1 can be guessed as control block

Partition sequence through network B1

B2 B3

This is not a safe partitioning.

1/11/2007Reference, date 4119/12/2006

Safe Partitioning

� Exception: a function call

Call F1 …, B11, B21,B22, B23, B11, B12, …

Partition sequence through network

B12

B21

B22

B23

Function F1

B11

Same sequence as previous one

But, this partitioning is not dangerous.

1/11/2007Reference, date 4219/12/2006

Safe Partitioning

� Safe partitioning

� Do not generate this kind of sequence through network

� Except previous case

…, B11, B21,B22, B23, B11, B12, …

Same

Different

1/11/2007Reference, date 4319/12/2006

Code Partitioning

� Partition management policy in smart card
� Keep nothing received policy

� Discard partition after its execution (does not cached)

� To avoid problem when there is a long function call chain
– If we cache partitions that are to be executed when a function returns, …

� Code partitioning algorithm
� For non-recurring function

– Executed at most once (e.g., main function, initialization func.,)

� For recurring function
– Executed multiple times

1/11/2007Reference, date 4419/12/2006

Code Partitioning

B1

B2 B3

A non-recurring function

P1

B1

B2 B3

A non-recurring function

1/11/2007Reference, date 4519/12/2006

Code Partitioning

� For recurring functions

� Step 1: If there is loop � merge loop body

– Same reason for non-recurring function

– Then CFG becomes acyclic

� Step 2: If CFG does not contain loop (= acyclic)

– Not safe

– Since they are executed multiple times

– Possible sequence

B1, B2, …, B1, B3, …

B1

B2 B3

A recurring function

*

*

1/11/2007Reference, date 4619/12/2006

Code Partitioning

� If CFG in recurring function is acyclic

� Server transmits whole partitions in one of the topological order (regardless of
control flow)

� Smart card discards the unnecessary partitions

B1

B2 B3

B4 B5

B6

B1, B2, B3, B4, B5, B6, …, B1, B2, B3, B4, B5, B6

Same when seen by an attacker

A recurring function

Horizontal Ordering

first time second time

1/11/2007Reference, date 4719/12/2006

Improving Performance

� Too many communication overhead

� Solutions

� Merging adjacent partitions

– Greedy algorithm

– Merge until sum of partitions exceed predefined limit

� Function caching

– Do not discard function after it is executed

– Dynamic cache eviction (e.g., LRU) is not acceptable (high overhead)

– � Static caching by compiler

