
1

HypotheticalHypothetical

Trust and Attack ModelsTrust and Attack Models

Mariano Ceccato (1), Christian Collberg (2), Paolo Tonella (1)

(1) ITC-irst, Trento, Italy

(2) University of Arizona, USA

ceccato@itc.it, tonella@itc.it, collberg@cs.arizona.edu



2

OutlineOutline

• Architecture of the software-only solution.

• Sources of trust.

• Possible attacks.

• Open issues.



3

The remote entrusting The remote entrusting 

problemproblem

Remote software authentication: ensuring a trusted machine 

(server) that an untrusted host (client) is running a “healthy” 
version of a program P:

• The program is unadulterated.
• It is executed on top of unadulterated HW/SW.

• The execution process is not manipulated externally.

The distinctive feature of remote entrusting is that the 

authenticated software needs to communicate over the 
network with the trusted machine to work properly. 



4

Entrusting remote Entrusting remote 

applicationsapplications

• An increasing number of applications depend on 

services provided over the network.

• Often service providers need to “entrust” their 

clients and assume they do not act maliciously.

• This is critical for applications involving:

– Trading (eCommerce), bidding, gaming.

– eGovernment, eVoting.

– Distributed (Grid) computing.

– Protocol implementations.

– Content and data protection.



5

Reference architectureReference architecture

Trusted platform (server) Untrusted platform (client)

Tag sequence 

verifier

Monitor factory

HW

OS

P

M

Tag

sequence

Replace

monitor



6

Sources of trustSources of trust



7

Authenticity verificationAuthenticity verification

The monitor M should verify:

• Text and data segments of P as loaded in 

memory.

• Libraries used by P.

• The execution environment (HW, OS, execution 

process, etc.).

• Results of specific computations or assertions.



8

Tag sequence generationTag sequence generation

The monitor M sends the server an authenticity tag 

sequence as evidence of healthy execution:

• Tags have limited time validity.

• A secret key, hidden into M itself, is used to 

generate them.

• If no tag or an incorrect tag is received by the 

server, the client is considered untrusted and no 

service is delivered to it.



9

ReplacementReplacement

To give attackers a limited time to succeed, the 

monitor M is periodically replaced:

• The duration depends on the estimated reverse 

engineering complexity, assuming humans are 

necessarily involved in the process.

• The monitor factory should generate highly 

independent monitors.



10

Code obfuscationCode obfuscation

To increase the resistance to reverse engineering, 

the code is obfuscated:

• Opaque predicates based on conditions that are 

hard to analyze statically (e.g., involving pointer 

structures) could be used.



11

Additional sources of Additional sources of 

trusttrust

• Self checking monitor: M checks itself before 
checking P.

• Network of trust:

M2

C2

M1

M4

C1

C4

M3

P

C3

• Tags include 
data verified by 
server: 
authenticity 
verification is no 
longer local to M

• Server sends challenge C to client: tag 
generation and authenticity verification depend 
on C.



12

AttacksAttacks



13

Assumptions on Assumptions on 

attackersattackers

A malicious user can:

• Install any software on the client.

• Read and write memory locations, processor registers 
and files.

• Observe and modify the network traffic.

• Modify P and M, both on disk and in memory.

• Use any available code analysis tool.

• Take advantage of tracers, emulators and debuggers.

• Tamper with libraries, operating system and hardware.

A malicious user cannot:

• Access and tamper with the trusted server.

• Know the software/hardware configuration of the server.



14

Classes of attacksClasses of attacks

1. Reverse engineering attack.

2. Execution environment attack.
3. Cloning attack.

4. Differential analysis attack



15

Reverse engineering Reverse engineering 

attacksattacks

Important functionalities and data structures are 

located and altered maliciously in P and M:

• Tag sequence generator.

• Authenticity checking functions.

• Secret keys.

• Input data (e.g., passed to checking functions).

• Output data (e.g., returned by checking functions).



16

Execution environment Execution environment 

attacksattacks

P is run on an emulator, in debug mode or is 

interpreted by an adulterated virtual machine:

• Memory locations, call stack, program counter and 
parameters can be altered dynamically.

• Dynamic libraries can be altered maliciously.

• Input and output values can be replaced on-the-fly.



17

Cloning attackCloning attack

Trusted platform (server) Untrusted platform (client)

Tag sequence 

verifier

Monitor factory

P

M

Tag

sequence

Replace

monitor
P’

M

This attack is ineffective if tag sequence includes computation data.



18

Differential analysis Differential analysis 

attackattack

The attacker gathers information about M by 

comparing the sequence of monitors delivered by 

the monitor factory in the past:

• If the strategy used by the monitor factory is even only 
partially understood, the time necessary to break new 

monitors might be reduced, eventually allowing the 

attacker to break a yet valid monitor.

M1 M2 M3 M4 Mk…… Mk+1 ?



19

Dependencies among Dependencies among 

attacksattacks

Execution environment, cloning and differential analysis

attacks are effective only if combined with reverse 
engineering, which provides information on:

� Where functionalities and data structures are implemented.

� When to intercept the execution.

� How to alter it.

Execution environment

Cloning

Differential analysis

Reverse engineering



20

XXXXXXT12

XXXXT11

XXXXT10

XXXXXXXXXXXXT9

XXXXXXXT8

XT7

XXXXXXXXT6

XT5

XXXT4

XT3

XXXXT2

XT1

A12A11A10A9A8A7A6A5A4A3A2A1

T9: Reverse engineering resistance (code obfuscation)
A*: T9 contributes to increased resistance against all attacks

T11: Tags include portion of output
A2: Replace checking function
A6: Modify output before return on M/P
A7: Modify output before return on env.
A11: Cloning attack

T10: Network of trust (self checking implementation)
A2: Replace checking function
A3: Replace tag sequence generator
A4: Modify input before call on M/P
A6: Modify output before return on M/P

T12: Bidirectional communication (challenge from server)
A2: Replace checking function
A3: Replace tag sequence generator
A4: Modify input before call on M/P
A5: Modify input before call on env.
A6: Modify output before return on M/P
A7: Modify output before return on env.

T8: Monitor replacement
A2: Replace checking function
A3: Replace tag sequence generator
A4: Modify input before call on M/P
A5: Modify input before call on env.
A6: Modify output before return M/P
A7: Modify output before return on env.
A12: Differential analysis

Analysis of attack Analysis of attack 

resistanceresistance

T1: M checks P text and data segment
A1: P is tampered withT2: M self checks itself before checking P
A2: Replace checking function
A3: Replace tag generator
A4: Modify input before call on M/P
A6: Modify output before return on M/P

T3: M checks libraries used by P
A9: replace dynamic librariesT4: M checks execution environment
A5: Modify input before call on env.
A7: Modify output before return on env.
A10: Tampered execution (debug mode)

T5: M checks OS and HW
A8: Replace HW/OST6: M checks results of computation
A1: P is tampered with
A4: Modify input before call on M/P
A5: Modify input before call on env.
A6: Modify output before return M/P
A7: Modify output before return on env.
A8, A9: Replace HW/OS; replace dynamic libraries
A10: Tampered execution (debug mode)

T7: Secret key used to generate tag sequence
A3: Replace tag sequence generator



21

Open issues (1)Open issues (1)

�Protection against reverse engineering:
�Code obfuscation metrics

�Beyond code obfuscation?

�Monitor factory:
�How to construct independent monitors automatically?

�What is the minimum set of functionalities of a monitor?

�Network of trust:
�What replacement frequency can we achieve with it?

�Tags include output data:
�How to avoid/minimize replication of the computation on 

the server?



22

Open issues (2)Open issues (2)

�Server sends challenge to client:

�How does it complement/substitute monitor 

replacement?

�Tag sequence generator:

�How to hide secret key into the monitor’s code?

�Execution environment:

�How to check sanity of HW and execution mode?

�How to recognize parallel execution of clone process?



23

ConclusionsConclusions

�The reference architecture alone is very 
fragile and should be augmented with:

�Network of trust

�Challenge from server

�Data embedded into tag sequence

�Replacement and monitor factory are at the 
core of remote entrusting

�Independent monitor generation is crucial



24

Proposal for a new Proposal for a new 

reference architecturereference architecture

Trusted platform (server) Untrusted platform (client)

Tag sequence 

verifier

Monitor factory

HW

OS

P
M1

Tag sequence

embedding 

output data

Replace monitor,

send challenge

MN


