Brecht Wyseur

K.U.Leuven - COSIC
brecht.wyseur@esat.kuleuven.be

Re-TRUST quarterly meeting
Trento, December 2006
1 Introduction
 ■ Context
 ■ Problem statement

2 White-Box Cryptography
 ■ Main Idea
 ■ Techniques
 ■ State of the Art

3 Re-TRUST
 ■ Interest and Applicability
 ■ Directions
Attack Context

- **Black Box** - Pure external information
 - Conventional model
 - Linear, differential cryptanalysis
- **Grey Box** - Side channel information
 - Time analysis
 - Power analysis
 - Electromagnetic analysis
- **White Box** - Internal behaviour
Attack Context

- **Black Box** - Pure external information
 - Conventional model
 - Linear, differential cryptanalysis

- **Grey Box** - Side channel information
 - Time analysis
 - Power analysis
 - Electromagnetic analysis

- **White Box** - Internal behaviour
Attack Context

- **Black Box - Pure external information**
 - Conventional model
 - Linear, differential cryptanalysis

- **Grey Box - Side channel information**
 - Time analysis
 - Power analysis
 - Electromagnetic analysis

- **White Box - Internal behaviour**
The White-Box Attack Context

Definition

- Fully-privileged attack software shares host
 ⇒ Complete access to the implementation of algorithms
- Dynamic execution can be observed
- Internal details both completely visible and alterable at will.

Attacker’s objective is to extract the embedded cryptographic key.

[Chow et al., SAC’02]
Problem statement - Attacks

- Entropy attack

Use of randomness property of keys: good keys have more entropy than the surrounding code and are thus identifiable.

- Post-compilation information leaks
 - Traces of Object Oriented code
 - Function names

- Code section theft or replacement
Key whitening attack

- An easy way to mount an attack on software binaries of block ciphers.
- Attack target: SPN block ciphers with a key whitening and static S-boxes
- Identify and overwrite S-boxes in static binary.
- \(y = (P(0) = 0) \oplus k_w \)
White-Box Cryptography

- **Goal:** Prevent extraction of key information
- **Main Idea**
 - How to make it as difficult as possible for an attack to extract any key information?
 - Transform into a network of key dependant lookup tables
 - Randomised behaviour of all network nodes.
 - Extend the cryptographic border
Techniques - Partial Evaluation

Replace the standard S-Boxes with key-specific S-Boxes

\[T_{i,j}^r(x) = S(x \oplus k_{i,j}^{r-1}) \]

- Protection against Kerins et al. attack
- Provides no real security, but is a necessary building block
External encodings

Shielding of the white-box implementation by embedding it within random bijections $F, G : GF(2^n) \rightarrow GF(2^n)$.

$$X' = G \circ X \circ F^{-1}$$

Internal encodings

Injections of random bijections in order to randomize the data flow between consecutive lookup tables.

$$L_2 \circ L_1 \Rightarrow (L_2 \circ F^{-1}) \circ (F \circ L_1)$$

⇒ Notion of local security
Techniques - Encodings

External encodings

Shielding of the white-box implementation by embedding it within random bijections $F, G : GF(2^n) \rightarrow GF(2^n)$.

$$X' = G \circ X \circ F^{-1}$$

Internal encodings

Injections of random bijections in order to randomize the data flow between consecutive lookup tables.

$$L_2 \circ L_1 \Rightarrow (L_2 \circ F^{-1}) \circ (F \circ L_1)$$

⇒ Notion of local security
Security

Local security

\[L \Rightarrow E(L) = G \circ L \circ F^{-1} \]

Encrypted \(L \) is provable secure

Problem: partial / global security

Metrics

- White-box diversity
- White-box ambiguity
State of the art

- **Data Encryption Standard (DES)**
 - Presented by Chow et al. 2002
 - Improved by Link et al., Wyseur et al.
 - Cryptanalysis of naked version by Jacob et al.
 → Fault injection attack
 - Implementation size: 728 kB

- **Advanced Encryption Standard (AES)**
 - Presented by Chow et al.
 → Implementation size: 752 kB (instead of 4.25 kB for the original black box implementation)
 - Cryptanalysed by Billet et al.
 → Algebraic extension of square attack
 - A new attempt by Bringer et al., 2006 → 142 MB …
Related Research Topics

- Code obfuscation
- Encrypted functions
 \[y = E(f)(x) \]
 - Homomorphic functions
 - Encrypted code execution
- Encrypted data processing \[E(y) = f'(E(x)) \]
- Observable cryptography
- Traitor tracing
ReTRUST WBC interest

- Protection of keys embedded into software running on the untrusted host;
- Research to use hardware to assist into further improved security;
- Use of white-box techniques to strengthen code obfuscation and the ‘re-trust protocol’;
- Replacement of white-box code
Future directions

- Research for improved white-box techniques
- Implementation and proof of concept
- Re-TRUST applicability

SNIP

WBC is **NOT** an alternative to the Re-TRUST approach, but **only** a building block.