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Attack Model Methodology
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Attack Trees

« Suggested by
Bruce Schneler

» Applicable in the
“Describe Attacks”
step of the Attack
Model
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I Disclaimers

concrete sysiem
 We made assumptions about the defences
* Most ideas using trusted hardware (WP3)
also work with just a trusted server (WP2)
* |Instead of attack trees we needed directed
acyclic graphs

I » Attack Models are normally done for a
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Example: Layered Defences
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5.1 Modify Unprotected Program

Change data

!

Change entry point

Find interesting
data
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Find alternate
entry points

Bypass checks
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Find interesting
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Process low level representation using: debugger, binary editor,
disassembler, decompiler, virtualization, OS support, ...




5.2 Defeat Obfuscation
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5.3 Defeat Self-checking
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files before check
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9.4 Defeat Tag Analysis

Figure out tag formula,
compute clean tags, block
tags from monitor

Run in parallel clean and
dirty program, block tags
from dirty copy

Replay tags
from a
clean run

|

Ensure that clean and
dirty copy do not diverge
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5.5 Defeat Monitor Protections
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Defeat Defeat
interlocking updates
Analyse/Arj;se\Analyse what Decrease monitor
updates diff locations an attack time to
between update less than update
updates changes interval
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5.6 Defeat I/O Profiling

Ensure that the finite state
machine of the tampered
program produces the same
outputs as the finite state
machine of the clean program,
for any inputs from the server

Tamper with the program by
keeping original states and
adding intermediate states.

Delay server inputs if necessary
until program 1s again in one of
the original states.
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5.7 Defeat Software Splitting

/\

Tamper with the
accessible parts
of the program

Provide substitutes for the
inaccessible parts of the
program

A

Capture communication with the
unavailable part to build a
dictionary
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5.8 Defeat Usage of Trusted Hardware

Monitor comm. for leaks of sensitive info

Delete, change, inject inputs to the T.H.

Delete, change, inject replies from T.H.

Impersonate T.H.

Desynchronize program/monitor and T.H.

|

Delay inputs or replies
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Closing remarks

* The attack model is:
- relatively detailed about attacker means and
limitations
- less clear about the assets and about the
attacker goals, they depend on the application
- vague about the attacks, they depend on the
design of the solution

« Send questions and constructive criticism
to Thomas.Herlea@esat.kuleuven.be
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