I Attack Model in the Presence of
I Trusted Hardware

I 2007-03-21

Thomas Herlea
(presented by Jan Cappaert)

Katholieke Universiteit Leuven

for RE-TRUST Work Package 3 Step 4



Attack Model Methodology

 Define assets ~

* Characterize
attackers e
- Goals
- Means
- Limitations J

« Describe attacks

See presentation
from Trento,
December 2007

Today's talk



Attack Trees

« Suggested by
Bruce Schneler

» Applicable in the
“Describe Attacks”
step of the Attack
Model

Eat cake

/™

Bake it

A

Heat up
oven

Buy it

ingredients

Mix




I Disclaimers

concrete sysiem
 We made assumptions about the defences
* Most ideas using trusted hardware (WP3)
also work with just a trusted server (WP2)
* |Instead of attack trees we needed directed
acyclic graphs

I » Attack Models are normally done for a




Root of the Attack Tree

5.1 Modify
Unprotected Program

5.2 Defeat
Obfuscation

5.8 Defeat Usage of
Trusted Hardware

\/ 5.7 Defeat

5.3 Defeat
Self-checking

Execute Modified / Software Splitting

5.4 Defeat
Tag Checking

Software (EMS)
5.6 Defeat

I/O Profiling

5.5 Defeat Monitor
Protections




Example: Layered Defences

7 S\
|

\ lag Checking

\ Monitor Protection /

Concrete Attack Tree

Execute Modified Software

i

5.4 Defeat Tag Checking

ﬁ

5.5 Defeat Monitor Protection

\ Obfuscation /

ﬁ

5.2 Defeat Obfuscation




5.1 Modify Unprotected Program

Change data

!

Change entry point

Find interesting
data

!

Find alternate
entry points

Bypass checks

!

Find interesting
checks

Process low level representation using: debugger, binary editor,
disassembler, decompiler, virtualization, OS support, ...




5.2 Defeat Obfuscation

T

Defeat control flow
obfuscation

AN

Defeat data
obfuscation

AN

Static Dynamic
analysis analysis

Detect live Merge split
variables values

I

Defeat instruction
obfuscation




5.3 Defeat Self-checking

=

e

Defeat
generic
monitor

Defeat
load-time
monitor

Defeat
runtime
monitor

Prevent suicide

Snapshot & retry

Load dirty, restore clean
files before check

A

Separation attack

Load dirty, feed clean
files to the check

Wurster
attack

e

Bypass monitor at
runtime

LLoad clean, attack after
checking ended




9.4 Defeat Tag Analysis

Figure out tag formula,
compute clean tags, block
tags from monitor

Run in parallel clean and
dirty program, block tags
from dirty copy

Replay tags
from a
clean run

|

Ensure that clean and
dirty copy do not diverge

10



5.5 Defeat Monitor Protections

T~

Defeat Defeat
interlocking updates
Analyse/Arj;se\Analyse what Decrease monitor
updates diff locations an attack time to
between update less than update
updates changes interval

11



5.6 Defeat I/O Profiling

Ensure that the finite state
machine of the tampered
program produces the same
outputs as the finite state
machine of the clean program,
for any inputs from the server

Tamper with the program by
keeping original states and
adding intermediate states.

Delay server inputs if necessary
until program 1s again in one of
the original states.

12



5.7 Defeat Software Splitting

/\

Tamper with the
accessible parts
of the program

Provide substitutes for the
inaccessible parts of the
program

A

Capture communication with the
unavailable part to build a
dictionary

13



5.8 Defeat Usage of Trusted Hardware

Monitor comm. for leaks of sensitive info

Delete, change, inject inputs to the T.H.

Delete, change, inject replies from T.H.

Impersonate T.H.

Desynchronize program/monitor and T.H.

|

Delay inputs or replies

14



Closing remarks

* The attack model is:
- relatively detailed about attacker means and
limitations
- less clear about the assets and about the
attacker goals, they depend on the application
- vague about the attacks, they depend on the
design of the solution

« Send questions and constructive criticism
to Thomas.Herlea@esat.kuleuven.be

15



