Threading
Software
Watermarks

University of Auckland Jasvir Nagra
New Zealand Clark Thomborson

Scenario

Technological
Tools

Social Tools
Advertising

Obfuscation
Watermarking

Legal Tools
DMCA

(—

Customer Charles Author Alice

e Software Watermarking

— embedding identifying information into a program

- Program is semantically equivalent to the original
- Embedded information can be extracted or detected
— Recognition is potentially keyed on a secret key

e Dynamic Watermarking

- embed information in the runtime behavior
of a program

- watermarked program must be run before the mark can be extracted
— static analysis to determine runtime characteristics is hard

— Only one other dynamic watermarking scheme exists: CT algorithm

How do you robustly embed information
in a software program using threads?

e We are interested in watermarks that are
— robust
—- dynamic

e QOutline
— Using threads for encoding watermarks
- Implementation in Java
— Attacks against this scheme
- Summary of notable features of our design

Why Threads?

e |deally embedding a watermark should:
— insert information
- complicate analysis such that
removing the watermark becomes difficult

e Static analysis of multithreaded programs is hard
— Dijikstra, Ousterhout, Collberg

e Collberg et al. suggest using threads for obfuscation

e We go further and show how to embed watermarks
using threads

Encoding Information in Threads

public class Foo {

T

public void run () { orig
blockA();
blockB(); "
} O blockA ()
Q blockB ()
public static void main (String args) {
Foo foo = new Foo();
foo.run();

}

Encoding Information in Threads

Thread t0 = new Thread () {
public void run () {
lock mutexO ;
if (!doneA) {
blockA ();

doneA = true ;

}

unlock mutexo;

lock mutex1;

if (!doneB) {
blockB ();

doneB = true ;

}
unlock mutexi:
}
b
Thread t1 = new Thread (10);
t1. start (); t0. start ();
t1. join (); t0. join ();

T

orig

— t0.start()
t1.start()

VvV

?

t0.join()
t1.join()

Four possible paths

{0

A

@

L 4

A

@

4

lock mutex0

blockA()

unlock mutex0

lock mutex1

blockB()

unlock mutex1

i1

n

®

4

A

@

Y

4

Encoding Information in Threads

Thread t0 = new Thread () {
public void run () {
lock mutexO ;
if (!doneA) {
blockA ();

doneA = true ;

}

lock mutex1;

unlock mutexo;

if (!doneB) {
blockB ();

doneB = true ;

}
unlock mutexi:
}
b
Thread t1 = new Thread (10);
t1. start (); t0. start ();
t1. join (); t0. join ();

T

orig

— t0.start()
t1.start()

VvV

?

t0.join()
t1.join()

Two possible paths

{0

EOTEDOD

lock mutex0

blockA()

lock mutex1

unlock mutex0

blockB()

unlock mutex1

i1

A

®

N

@

Y

4

Encoding Information in 1 wreads

e QOriginal program executes:
— (O, blockA), (t0, blockB)
— (1O, blockA), (t1, blockB)
— (t1, blockA), (t0, blockB)
— (11, blockA), (t1, blockB)

e Encoded program executes:

— (t0, blockA), (t0, blockB) Calbe used
— (t1, blockA), (t1, blockB) to dcode a
e Different encoded program: bit

— (O, blockA), (t1, blockB)
— (11, blockA), (10, blockB)

Decompiling to Java

e Java requires well-nested monitors
— at source level Java uses only a synchronized block

e Poorly nested monitors cannot be easily decompiled
- synchronized blocks cannot capture these semantics

e No alteration of the JVM is needed
— exploit semantic difference between Java language & JVM
- dynamically all monitor enter and exit calls are matched
— security guarantees made by Java are maintained

e One more impediment for the attacker

Thread-based Watermarking

e Overview

Encodi
g M ETEIS g it
' ~ Tracing s
\(

Trace

|
)

Author Alice 5 % l <L
D Watermarke%
Program

]‘g G

{ “Copyright Alice, 2004”

_

ki

Encoding
function

436470797269...

@ Error correcting code

Bits to embed = 0100101001...

Tracing

public int foo (intn) {
blockA; «—— embed bit 0
iIf (blockB) {
blockC;
} else { __ embed bit 1
blockD; __| embed bit 1
blockE,

}

e Alice selects a path through the program: A, B, D, E
e A subset of basic blocks that get executed on that path: A, D, E
e Embedding code in the basic blocks inserts the watermark

e For example Alice can embed “011” in A, D and E as shown

Embedding

e Divide each selected basic block into three pieces
e Create three new threads

e Execute the three pieces using the three threads
e Use locks to maintain semantic correctness

e Control which threads execute which piece

e Bit0
— (tA, piecel), (B, piece2), (tC, piece3)

e Bit 1
— (tA, piecel), (iB, piece?2), (tA, piece3)

Detecting Thread Watermarks

(t3, mutex0) | (t1, mutex0)
(t3, mutex1) | (t3, mutexOrig)
(t2, mutex0) | (t3, mutex0)
: (t2, mutexi)

e Annotate the program for tracing
e Run the program with secret input

e Decode the sequence of threads and locks found

Decoding Thread Watermarks

e Patterns of locks

e Bit0
~ 1A, tA, 1B, tC,/tA | tA, tB

e Bit 1
_tA 1A, 1B, tC,@ tA, tB

Pattern Matching Attacks

e To keep the recognition dynamic, we have to
prevent static pattern matching attacks
distinguishing between bit0 and bit1

Bit O Bit 1
if (doneC || doneD) { if (!doneD) {
monitorexit mutexi; monitorexit mutexO;

monitorexit mutexO; monitorexit mutexi;

Pattern Matching Defense

e Static analysis will discover:
- monitorexit takes different operands
~ predicates are different

e Merging predicates
— use opaque predicates to collapse predicates

e Merging operands
— operands to monitorexit in JVM appear on the stack

— can obscure stack arguments
e pointer aliasing

Opaque Predicates

e Opaque predicate is a
-~ Non obvious tautology
- Boolean expression
- Value known to watermarker at watermarking time
— Difficult for the attacker to deduce

Opaque Predicate Merge

e merge different predicates into a single statically
indistinguishable predicate

e BitO
(((doneC || doneD) && opaqueTrue) ||
(IdoneD && opagueFalse))

o Bit 1
(((doneC || doneD) && opaqueFalse) ||
(IdoneD && opaqueTrue))

Pattern Matching Defense

e Static analysis will discover:
— predicates are different
- monitorexit takes different operands

e Merging predicates
— use opaque predicates to collapse predicates

e Merging operands
— operands to monitorexit in JVM appear on the stack

— can obscure stack arguments
e pointer aliasing

Statistics

e Initial experiments using sample Java programs indicate:

— Significant slowdown factor of ~8 on embedding a 48-bit

watermark in a tightly optimized benchmark program
without any 1/O.

— More modest slowdown factor <2 on GUI programs
with a lot of user 1/O
— Achieved by avoiding tight loops and hotspots

- Embedding a 48-bit watermark — 60kB increase in size
— Size increase approx. linear with number of bits inserted

Evaluation

e Obfuscation Attacks
— renaming attacks
— block reordering
— method inlining/outlining

e Decompilation/Recompilation Attacks

— only well-nested monitors can be expressed using synchronized
blocks at Java source level

— current decompilers fail to decompile watermarked programs

— decompilation is possible in theory
e Dava emulates these locks using a library

e Additive Attacks
— Insert additional thread switches into the program
— Inserts additional bits into the decoded bit string

Conclusion

e Problem:

How can we use threads to embed information in a program?

e Solution

- Encode the watermark as a bit string

- Embed the bit string
e locks control which threads execute selected basic blocks

- Detect watermark
e trace the order in which locks get acquired

e Stealth — prevent static analysis

—- Use pointer aliasing to hide which locks are used; and
— Use opaque predicates to merge different predicates

Questions

e Questions?

