
��������	��������	��������	��������	

������
������
������
������

������������������������������������

Jasvir Nagra

Clark Thomborson

University of Auckland

New Zealand

��������

Customer Charles Author Alice

Pirate Bob

IP

P
ro

g
ra

m

Social Tools
Advertising

Legal Tools
DMCA

Technological

Tools

Obfuscation

Watermarking

	
�����
� Software Watermarking

– embedding identifying information into a program

– Program is semantically equivalent to the original

– Embedded information can be extracted or detected

– Recognition is potentially keyed on a secret key

	
�����
� Dynamic Watermarking

– embed information in the runtime behavior

of a program

– watermarked program must be run before the mark can be extracted

– static analysis to determine runtime characteristics is hard

– Only one other dynamic watermarking scheme exists: CT algorithm

�������
How do you robustly embed information

in a software program using threads?

� We are interested in watermarks that are

– robust

– dynamic

� Outline

– Using threads for encoding watermarks

– Implementation in Java

– Attacks against this scheme

– Summary of notable features of our design

	
���
�����
� Ideally embedding a watermark should:

– insert information

– complicate analysis such that

removing the watermark becomes difficult

� Static analysis of multithreaded programs is hard
– Djikstra, Ousterhout, Collberg

� Collberg et al. suggest using threads for obfuscation

� We go further and show how to embed watermarks

using threads

�������������������������
����
Torig

public class Foo {

public void run () {

blockA();
blockB();

}

�

public static void main (String args) {

Foo foo = new Foo();
foo.run();

}

}

blockB ()

blockA ()

�������������������������
����
Torig t0 t1

blockA()

blockB()

t0.start()
t1.start()

t0.join()

t1.join()

Four possible paths

unlock mutex0

lock mutex0

unlock mutex1

lock mutex1

unlock mutex0;

if (! doneB) {

blockB ();

doneB = true ;

}

unlock mutex1;

}

};

Thread t1 = new Thread (t0);

t1. start (); t0. start ();

t1. join (); t0. join ();

Thread t0 = new Thread () {

public void run () {

lock mutex0 ;

if (! doneA) {

blockA ();

doneA = true ;

}

lock mutex1;

Two possible paths

�������������������������
����
Torig t0 t1

blockA()

blockB()

t0.start()
t1.start()

t0.join()

t1.join()

lock mutex1

lock mutex0

unlock mutex1

unlock mutex0

lock mutex1;

if (! doneB) {

blockB ();

doneB = true ;

}

unlock mutex1;

}

};

Thread t1 = new Thread (t0);

t1. start (); t0. start ();

t1. join (); t0. join ();

Thread t0 = new Thread () {

public void run () {

lock mutex0 ;

if (! doneA) {

blockA ();

doneA = true ;

}

unlock mutex0;

�������������������������
����
� Original program executes:

– (t0, blockA), (t0, blockB)

– (t0, blockA), (t1, blockB)

– (t1, blockA), (t0, blockB)

– (t1, blockA), (t1, blockB)

� Encoded program executes:

– (t0, blockA), (t0, blockB)

– (t1, blockA), (t1, blockB)

� Different encoded program:

– (t0, blockA), (t1, blockB)

– (t1, blockA), (t0, blockB)

Can be used

to encode a

bit�

�������������������
� Java requires well-nested monitors

– at source level Java uses only a synchronized block

� Poorly nested monitors cannot be easily decompiled

– synchronized blocks cannot capture these semantics

� No alteration of the JVM is needed

– exploit semantic difference between Java language & JVM

– dynamically all monitor enter and exit calls are matched

– security guarantees made by Java are maintained

� One more impediment for the attacker

�
����� ����	�������!���

Author Alice

WM

P
ro

g
ra

m

Input

� Overview

Encoding
WM bits

Tracing
Trace

Watermarked

Program

Embedding

��������

�������������

	
��������������������

Error correcting code

0100101001…

Encoding
function

Bits to embed =

�������
public int foo (int n) {

blockA;

if (blockB) {

blockC;

} else {

blockD;

blockE;

}

}

� Alice selects a path through the program

� A subset of basic blocks that get executed on that path

� Embedding code in the basic blocks inserts the watermark

� For example Alice can embed “011” in A, D and E as shown

n=3

embed bit 1

embed bit 0

embed bit 1

: A, B, D, E

: A, D, E

�� ������
� Divide each selected basic block into three pieces

� Create three new threads

� Execute the three pieces using the three threads

� Use locks to maintain semantic correctness

� Control which threads execute which piece

� Bit 0

– (tA, piece1), (tB, piece2), (tC, piece3)

� Bit 1

– (tA, piece1), (tB, piece2), (tA, piece3)

�����������
�����	�������!

� Annotate the program for tracing

� Run the program with secret input

� Decode the sequence of threads and locks found

n=3 (t3, mutex0) (t1, mutex0)

(t3, mutex1) (t3, mutexOrig)

(t2, mutex0) (t3, mutex0)

� (t2, mutex1)

����������
�����	�������!
� Patterns of locks

� Bit 0

– tA, tA, tB, tC, tA, tA, tB

� Bit 1

– tA, tA, tB, tC, tC, tA, tB

"�������#���
����$����!
� To keep the recognition dynamic, we have to

prevent static pattern matching attacks

distinguishing between bit0 and bit1

if (doneC || doneD) {
�

monitorexit mutex1;
�

monitorexit mutex0;
�

}

if (! doneD) {
�

monitorexit mutex0;
�

monitorexit mutex1;
�

}

Bit 0 Bit 1

"�������#���
����������
� Static analysis will discover:

– monitorexit takes different operands

– predicates are different

� Merging predicates

– use opaque predicates to collapse predicates

� Merging operands

– operands to monitorexit in JVM appear on the stack

– can obscure stack arguments

� pointer aliasing

���%���"��������
� Opaque predicate is a

– Non obvious tautology

– Boolean expression

– Value known to watermarker at watermarking time

– Difficult for the attacker to deduce

� �
0

6 4

5 1 3

2

���%���"���������#����
� merge different predicates into a single statically

indistinguishable predicate

� Bit 0

(((doneC || doneD) && opaqueTrue) ||

(!doneD && opaqueFalse))

� Bit 1

(((doneC || doneD) && opaqueFalse) ||

(!doneD && opaqueTrue))

"�������#���
����������
� Static analysis will discover:

– predicates are different

– monitorexit takes different operands

� Merging predicates

– use opaque predicates to collapse predicates

� Merging operands

– operands to monitorexit in JVM appear on the stack

– can obscure stack arguments

� pointer aliasing

��������
� Initial experiments using sample Java programs indicate:

– Significant slowdown factor of ~8 on embedding a 48-bit

watermark in a tightly optimized benchmark program

without any I/O.

– More modest slowdown factor <2 on GUI programs

with a lot of user I/O

– Achieved by avoiding tight loops and hotspots

– Embedding a 48-bit watermark � 60kB increase in size

– Size increase approx. linear with number of bits inserted

����������
� Obfuscation Attacks

– renaming attacks

– block reordering

– method inlining/outlining

� Decompilation/Recompilation Attacks
– only well-nested monitors can be expressed using synchronized

blocks at Java source level

– current decompilers fail to decompile watermarked programs

– decompilation is possible in theory

� Dava emulates these locks using a library

� Additive Attacks
– insert additional thread switches into the program

– inserts additional bits into the decoded bit string

&��������
� Problem:

How can we use threads to embed information in a program?

� Solution

– Encode the watermark as a bit string

– Embed the bit string

� locks control which threads execute selected basic blocks

– Detect watermark

� trace the order in which locks get acquired

� Stealth – prevent static analysis

– Use pointer aliasing to hide which locks are used; and

– Use opaque predicates to merge different predicates

'������

�Questions?

