Hiding program slices
for software security

X. Zhang and R. Gupta
University of Arizona



Software Piracy

Software protection technique to prevent software piracy based on
program slicing

Prevent the malicious user to gain a working copy of the software that
can be distributed for illegal use

Does not prevent tampering



ldea: Software Splitting

Split software modules into open and Aidden components:

— Open components installed and executed on unsecure
machine

— Hidden components installed and executed on secure
machine

Open components can be stolen but they are incomplete (they
only provide a subset of the application functionality)

Similar to server side execution



ldea: Software Splitting

Secure | ./ Unsecure
machine machine
A ;

Software module




Challenges

e Resilience

Deriving the hidden components by observing the code of the
open components and their run-time interactions with the
hidden components requires a great deal of effort

e (Cost
Limit the communication between hidden and open components



Splitting Transformation

e (S,C) program runtime state and code

Hidden component Open component

e (s,c) additional variables and new code implementing the interaction
between components



Hiding Modules

e Select one or more complete modules and treat them as hidden
components does not work because the attacker could guess the
functionality of the module

e Assuming that the attacker cannot guess the functionality of the
module, we still need to find suitable module for hiding

e These modules should be self-contained but self-contained modules are
not very common



Hiding Module Slices

e Construction of hidden components out of program slices such that
their behaviour cannot be easily understood

e A program slice is composed by:
— Variables

— Expressions and assignments
— Control flow



Variables

Consider a function f and a subset of hidden variables of f:
— Hidden components Hf that maintains the hidden variables
— Open component Of

Interaction between Hf and Of:

— When Of computes a new value for a hidden variable v the new
value is sent to Hf to update it

— When Of needs to use v it recieves the current value from Hf

All the references to hidden variables in Of are replaced by a single
variable v in Of

Dynamic analysis can recover the hidden variables



Expressions and Assignments

Some statements that affect the values of hidden variables are moved
to the hidden component

All the statements that belong to the forward-data slices constructed
by following data dependence edges originating at definitions of hidden
variables

An hidden variable may cause additional variables to be hidden (or
partially hidden) in Hf

More difficult to estabilish relations between the values that are
exchanged between Hf and Of:

— we do not know how many variables are hidden and
— the form of expressions that matain them

10



Control Flow

Move control ancestors of selected statements that belong to forward
data slices of hidden variables

Control ancestors are hidden if doing so will simultaneously introduce a
control flow construct in Hf and remove or alter the control flow in Of

Moving control flow in Hf makes the task of recovering hidden
components more difficult

11



Function Selection

The overall cost depends on the number of functions that are
selected for splitting

Contruct the call graph, identify a cut and split the functions
that are part of the cut

— Avoid functions that are called from inside a loop
— No functions calls made by f are hidden in Hf

— Only scalar variables local to f are considered as candidate hidden
variables

12



Function Splitting

Select a function Fand a local variable v for splitting

Hfis given by fragments of code (statements) of Fidentified by an
unique label ID

In Of there are calls to /fin the points where the statements have
been removed: Hf([needed Of values],ID)

13



Function Splitting

Step 1: construct Slice(f,v) starting from the statements defining v

Step 2: examine the statements in 7and Slice(f,v) to determine the set
of hidden variables

Step 3: split each statement /s A rhsin Slice(f,v) between Hf and Of

— Both |hs and rhs in Hf

— Only lhs in Hf, because rhs cannot be placed in Hf (function call)
— Only rhs in Hf, because variable lhs cannot be placed in Hf (array)
— None

14



Function Splitting

Step 4: examine the statements that are not in Slice(f,v) but that
contain a reference/use/definition to a partially transferred variable

— X A rhsand xis partially hidden: r/sis evaluated on Of and the
result is sent to Hf in order to update the value of variable x

— /hs A rhs and rhs refers to x: a call to Hf preceeds this statement in
Of in order to obtain the value of x

15



function £ (..)
int a,b,c
int ..

a A 3x + vy

b A a + w
A[b-1] A ..

if (y>10) then
c A a*x +w
else

C A 2x +w
endif

Example

function Of ()
int ¢, t

int..

t

1o

HEf ([x,y],11)

A Hf ([w],12)

A[HE([],13)] A ..

t A HE([y,x,w],14)

if (¢t == 1) then
c A 2x +w
endif

function Hf (int[], i1d)

static 1int a,b,c
switch id

11: a A 3t[0] + t[1]
return (any)

12: b A a + t[0]
return (any)

13: return (b-1)

14: if (t[0] > 10) then

c A a*t[1l] + t[2]

endif
return((t[0]>10)?2:0:1)

16



Complexity of Hf

leaked value (Iv): lv = f(observable values)
Arithmetic complexity of f :

AC(f,P) = <Type, Inputs, Degree>

Control flow complexity of f:

CC(f) = <Paths, Predicates, Flow>

17



Software Splitting

The complexity of the hidden components guarantees that it is difficult
for an attacker to recover the hidden component

Algorithm for measuring arithmetic and flow complexity of v = f(P,
observable values used). This algorithm helps in choosing between
different splitting options

Run time overhead 4% - 58%

18



