Hypothetical
Trust and Attack Models

Mariano Ceccato (1), Christian Collberg (2), Paolo Tonella (1)
(1) ITC-irst, Trento, ltaly
(2) University of Arizona, USA
ceccato@itc.it, tonella@itc.it, collberg@cs.arizona.edu

The remote entrusting problem

Remote software authentication: ensuring a trusted machine (server) that an
untrusted host (client) is running a “healthy” version of a program P

The program is unadulterated.
It is executed on top of unadulterated HW/SW.
The execution process is not manipulated externally.

The distinctive feature of remote entrusting is that the authenticated software
needs to communicate over the network with the trusted machine to work

properly.

Trusted platform (server) Untrusted platform (client)

Tag

sequence
Tag sequence aRbl e

““
Monitor factory

Replace
monitor

21/03/2007 Trust and Attack Models

Sources of trust

__]
21/03/2007 Trust and Attack Models 3

Authenticity verification

The monitor M should verify:

Text and data segments of P as loaded in memory.
Libraries used by P.

The execution environment (HW, OS, execution
process, etc.).

Results of specific computations or assertions.

HW
OS

__]
21/03/2007 Trust and Attack Models 4

Tag sequence generation

The monitor M sends the server an authenticity tag sequence as
evidence of healthy execution:

Tags have limited time validity.
A secret key, hidden into M itself, is used to generate them.

If no tag or an incorrect tag is received by the server, the client is
considered untrusted and the service delivery is suspended as a
countermeasure.

Tag

sequence
Tag sequence (IR B
verifier

21/03/2007 Trust and Attack Models 5

Replacement

To give attackers a limited time to succeed, the
monitor M is periodically replaced:

The duration depends on the estimated reverse
engineering complexity, assuming humans are
necessarily involved in the process.

The monitor factory should generate highly
iIndependent monitors.

21/03/2007 Trust and Attack Models

Code obfuscation

To increase the resistance to reverse engineering,
the code is obfuscated:

Opaqgue predicates based on conditions that are

hard to analyze statically (e.g., involving pointer
structures) could be used.

__]
21/03/2007 Trust and Attack Models

Self checking monitor: M checks itself before checking P.

Tags include data verified by server: authenticity verification is no
longer local to M.

Server sends challenge C to client: tag generation and authenticity
verification depend on C.

Network of trust:

21/03/2007 Trust and Attack Models 8

Attacks

__]
21/03/2007 Trust and Attack Models 9

Assumptions on attacker

A malicious user can:
Give wrong information to the server about its hardware.

Install any software on the client.

Read and write memory locations, processor registers and files.
Observe and modify the network traffic.

Modify P and M, both on disk and in memory.

Use any available code analysis tool.

Take advantage of tracers, emulators and debuggers.

Tamper with libraries, operating system and hardware.

A malicious user cannot:
Access and tamper with the trusted server.
Know the software/hardware configuration of the server.

21/03/2007 Trust and Attack Models

10

Classes of attacks

Reverse engineering attack.
Execution environment attack.
Cloning attack.

Differential analysis attack

|
21/03/2007 Trust and Attack Models 11

Reverse engineering attacks

Important functionalities and data structures
are located and altered maliciously in P
and M.

Tag sequence generator.

Authenticity checking functions.

Secret keys.

Input data (e.g., passed to checking functions).

Output data (e.qg., returned by checking
functions).

21/03/2007 Trust and Attack Models 12

Execution environment attacks

P iIs run on an emulator, in debug mode or
IS Interpreted by an adulterated virtual
machine:

Memory locations, call stack, program counter
and parameters can be altered dynamically.

Dynamic libraries can be altered maliciously.

Input and output values can be replaced on-the-
fly.

21/03/2007 Trust and Attack Models 13

Cloning attack

Trusted platform (server) Untrusted platform (client)

Tag

sequence
Tag sequence S
verifier
Monitor factory

-
-
-,
-’
-,
-
-,

This attack is ineffective if tag sequence includes computation data.

21/03/2007 Trust and Attack Models 14

Differential analysis attack

The attacker gathers information about M by
comparing the sequence of monitors delivered
by the monitor factory in the past:

If the strategy used by the monitor factory is (even only
partially) understood, the time necessary to break new
monitors might be reduced, eventually allowing the
attacker to break a still valid monitor.

i e v [e S B R

21/03/2007 Trust and Attack Models 15

Analysis of attack resistance

Attacks

Sources of
trust

Reverse engineering attacks

Execution environment attacks

Pis
tampered
with
(1)

Replace
checking
function

(2)

Replace tag
sequence
generator

(3)

Modify input
before call on

Modify output
before return on

M/P env,
(4) (5)

M/P env.
(6) (7)

Replace
HW/0S

(8)

Replace

dynamic

libraries
(9)

Tampered
execution
(debug mode)
(10)

Cloning
attack

(11)

Differential
analysis

(12)

(1) M checks P text
and data segment

X

(2) M self checks
itself before
checking P

(3) M checks
libraries
used by P

(4) M checks
execution
environment

(5) M checks the
O8S and the HW

(6) M checks results
of computation

(T) Secret key
used to generate
the tag sequence

(%) Monitor
replacement

(9) Rev-eng
resistance
(code obfuscation)

(10) Network of
trust (self-checking
implementation)

(11) Tags include
(portion of)
output

(12) Bi-directional
communication
(challenge from

the server)

