
Increasing the integration between

the un-trusted application and the

monitor

Increasing the integration between

the un-trusted application and the

monitor
S. Di Carlo, D. D’Aprile

TESTGROUTP - Politecnico di Torino (Italy)

www.testgroup.polito.it

S. Di Carlo, D. D’Aprile

TESTGROUTP - Politecnico di Torino (Italy)

www.testgroup.polito.it

20-21 March 2007 GEMALTO (Paris)20-21 March 2007 GEMALTO (Paris)

Re-TRUST, 20-21 March 2007, Paris

Purpose

• To enhance the robustness of the trust
model in RE-TRUST by increasing the
integration between the monitor and the
monitored application

• To enhance the robustness of the trust
model in RE-TRUST by increasing the
integration between the monitor and the
monitored application

Re-TRUST, 20-21 March 2007, Paris

Outline

• Motivations

• Distributed monitor design

• Modified trust model

• Conclusions and future works

• Motivations

• Distributed monitor design

• Modified trust model

• Conclusions and future works

Re-TRUST, 20-21 March 2007, Paris

Outline

• Motivations

• Distributed monitor design

• Modified trust model

• Conclusions and future works

• Motivations

• Distributed monitor design

• Modified trust model

• Conclusions and future works

Re-TRUST, 20-21 March 2007, Paris

Motivations

����

Trusted Platform

����

Untrusted Platform

HW

OS

P

Monitor

Factory

Tag checker

M

TAGS

Re-TRUST, 20-21 March 2007, Paris

Motivations

• Trust model key elements:

– Application authenticity verification

• Text and data segments

• Libraries

• Execution environment

• Assertions

– Authenticity tags flow

– Replacement

– Code obfuscation

• Trust model key elements:

– Application authenticity verification

• Text and data segments

• Libraries

• Execution environment

• Assertions

– Authenticity tags flow

– Replacement

– Code obfuscation

Re-TRUST, 20-21 March 2007, Paris

Motivations

����

Trusted Platform

����

Untrusted Platform

HW

OS

P

Monitor

Factory

Tag checker

M

TAGS

Re-TRUST, 20-21 March 2007, Paris

Motivations

• Monolithic monitors, loosely attached to the

program can be easily disengaged

– AOP based monitors

– JVMTI based monitors

– .NET based monitors

• The integration between M and P must be strong

• Monolithic monitors, loosely attached to the

program can be easily disengaged

– AOP based monitors

– JVMTI based monitors

– .NET based monitors

• The integration between M and P must be strong

Re-TRUST, 20-21 March 2007, Paris

Outline

•Motivations

•Distributed monitor design

•Modified trust model

•Conclusions

•Motivations

•Distributed monitor design

•Modified trust model

•Conclusions

Re-TRUST, 20-21 March 2007, Paris

Distributed monitor design

• Software entity as an

abstraction of:

– Functions

– Classes

– Modules

– Library

– ….

• Software entity as an

abstraction of:

– Functions

– Classes

– Modules

– Library

– ….

����

P
Software entity 1

Software entity 2

Software entity n

Re-TRUST, 20-21 March 2007, Paris

Distributed monitor design

����

P
Software entity 1

Software entity 2

Software entity n

Functional codei

Tagging codei

Replacement/

Mutation

codei

MM

Re-TRUST, 20-21 March 2007, Paris

Distributed monitor design

• Functional code: performs the
functionalities the entity is designed for

• Tagging code:
– Monitoring of static and dynamic parameters of P

– Generation of the secure tags flow

• Replacement/Mutation Code:
– Replacement: manages the replacement of the tagging

code

– Mutation: a mutation function dynamically modifies the
entity to get a new version with different tagging code

• Functional code: performs the
functionalities the entity is designed for

• Tagging code:
– Monitoring of static and dynamic parameters of P

– Generation of the secure tags flow

• Replacement/Mutation Code:
– Replacement: manages the replacement of the tagging

code

– Mutation: a mutation function dynamically modifies the
entity to get a new version with different tagging code

Re-TRUST, 20-21 March 2007, Paris

Distributed monitor design

• Advantages:

– M is spread in P

– Each entity may exploit design diversity to

implement different monitoring mechanism

• Is this approach enough to to guarantee the
required level of trust?

• Advantages:

– M is spread in P

– Each entity may exploit design diversity to

implement different monitoring mechanism

• Is this approach enough to to guarantee the
required level of trust?

Re-TRUST, 20-21 March 2007, Paris

Distributed monitor design

• Additional requirements

– Tagging code and functional code interleaved

• Software guards? [H. Chang and M. Atallah. Protecting software

code by guards. In Proceedings of ACM Workshop on Security and
Privacy in Digital Right Management, 2002]

• Tagging code replacement not trivial:

– Replace the full entity?

– Use of mutation

• Additional requirements

– Tagging code and functional code interleaved

• Software guards? [H. Chang and M. Atallah. Protecting software

code by guards. In Proceedings of ACM Workshop on Security and
Privacy in Digital Right Management, 2002]

• Tagging code replacement not trivial:

– Replace the full entity?

– Use of mutation

Re-TRUST, 20-21 March 2007, Paris

Distributed monitor design

– Code deployed in an encrypted form?

• Entities decrypted only when executed

• Once the entity is loaded into the main

memory the attacker has the potential
opportunity of analyzing the clear code

– We have to reduce this opportunity

– Code deployed in an encrypted form?

• Entities decrypted only when executed

• Once the entity is loaded into the main

memory the attacker has the potential
opportunity of analyzing the clear code

– We have to reduce this opportunity

Re-TRUST, 20-21 March 2007, Paris

Outline

•Motivations

•Distributed monitor design

•Modified trust model

•Conclusions ad future works

•Motivations

•Distributed monitor design

•Modified trust model

•Conclusions ad future works

Re-TRUST, 20-21 March 2007, Paris

ServerP

Modified trust model

Storage

Software entity 1

Software entity 2

Software entity n

Client manager Server manager

Software entity 1 Tags1
Tags1

Load1, key1
Load1, key1

Re-TRUST, 20-21 March 2007, Paris

Modified trust model

• Server manager commands:

– Load: it asks the client manager to load a new entity
and it provides the decryption key

– Unload: it asks the client manager to garbage a
software entity when not needed:

• Reduces the time an entity is in main memory
(clear code)

• Other entities can check that this mechanism is no
tampered with

• Server manager commands:

– Load: it asks the client manager to load a new entity
and it provides the decryption key

– Unload: it asks the client manager to garbage a
software entity when not needed:

• Reduces the time an entity is in main memory
(clear code)

• Other entities can check that this mechanism is no
tampered with

Re-TRUST, 20-21 March 2007, Paris

Modified trust model

– Replacement: it communicates with the replacement
code of an entity to:

• Send a new version of the entity (encrypted with a
new key) to be stored for the next execution

• Send a mutation command to the entity

– Replacement: it communicates with the replacement
code of an entity to:

• Send a new version of the entity (encrypted with a
new key) to be stored for the next execution

• Send a mutation command to the entity

Re-TRUST, 20-21 March 2007, Paris

Modified trust model

• The client manager

– Reacts to the command received by the server

manager

– Loads, decrypts and starts the execution of software

entities

• The client manager

– Reacts to the command received by the server

manager

– Loads, decrypts and starts the execution of software

entities

Re-TRUST, 20-21 March 2007, Paris

Modified trust model

• Requirements:

– The server has to know the execution status of the

application

– The server has to know the dependencies (control

flow) between software entities

• Requirements:

– The server has to know the execution status of the

application

– The server has to know the dependencies (control

flow) between software entities

Re-TRUST, 20-21 March 2007, Paris

Modified trust model

Server

Server manager

Application

tablei

Dependency

graphi

Stores the execution status

of the application i

Stores the execution status

of the application i

Represents the

dependences between

software entities and
allowed execution flows

Represents the

dependences between

software entities and
allowed execution flows

Re-TRUST, 20-21 March 2007, Paris

Modified trust model

• Dependency graph

– Obtained at compile time

– Trade-off between granularity and complexity

– Used to schedule the software entities execution

– Used to perform a remote (server side) control flow

integrity checking

• Dependency graph

– Obtained at compile time

– Trade-off between granularity and complexity

– Used to schedule the software entities execution

– Used to perform a remote (server side) control flow

integrity checking

Re-TRUST, 20-21 March 2007, Paris

Outline

•Motivations

•Distributed monitor design

•Modified trust model

•Conclusions and future works

•Motivations

•Distributed monitor design

•Modified trust model

•Conclusions and future works

Re-TRUST, 20-21 March 2007, Paris

Conclusions and future works

• We presented a distributed architecture for the

RE-TRUST monitor and an extension of the trust

model that allows:

– Strong integration between monitor and monitored

application

– Increased effort to reverse engineering the application

– Distribution of the checking activities between

application and trust server

• We presented a distributed architecture for the

RE-TRUST monitor and an extension of the trust

model that allows:

– Strong integration between monitor and monitored

application

– Increased effort to reverse engineering the application

– Distribution of the checking activities between

application and trust server

Re-TRUST, 20-21 March 2007, Paris

Conclusions and future works

• Future works:

– Formalization of the idea

– Investigation on mutation mechanisms

– Applicability analysis on different HW/SW
platforms:

• PowerPC, Intel, …

• Native code, Java, .NET

– Prototype platform:

• VoIP system is the candidate platform

• Future works:

– Formalization of the idea

– Investigation on mutation mechanisms

– Applicability analysis on different HW/SW
platforms:

• PowerPC, Intel, …

• Native code, Java, .NET

– Prototype platform:

• VoIP system is the candidate platform

