
Java obfuscator

Pierre.Girard@gemalto.com

Re-Trust quarterly meeting

Meudon, March 21, 2007

Pierre Girard, March 21, 2007

Agenda

� Use cases for Java obfuscation in Gemalto

� Functional requirements

� Security requirements

� Design directions

Pierre Girard, March 21, 2007

Protect the secure link between an agent and a

server

� Secure channel between a card and a host agent on a PC

� VoIP soft phone / IM client

– Potential targets: authentication and encryption keys

� Electronic signature

– Potential target: unauthorized signature of e-document

� Secure channel between a card and a host agent on a phone

� J2ME/CLDC/MIDP game + JSR#177 + SIM dongle

� Obfuscation is mandatory to protect the secure link

� Integrity and confidentiality keys

� Authentication key of the agent

Pierre Girard, March 21, 2007

Protection against software modifications

� New “features” or “customization” by the customer

� Warranty problem

� Nightmare for the customer care

� Extraction of value added modules

� E.g. : SS7 communication module, PKCS#11 module, …

� Enforcement of crypto export regulations

� Avoid modifications to by-pass key length limitation

Pierre Girard, March 21, 2007

Security of embedded software

� Some parts of Java Card platforms are written in Java Card

� These parts may be reused in SDK (card simulators)

� Threats
� Security mechanisms identification and reverse engineering

� Bugs or weaknesses identification

� Preparation and tuning of attacks on real cards

Pierre Girard, March 21, 2007

IP protection

� Protection of know-how

� Security mechanisms

� Optimizations

� …

� Protection of secret algorithms
� Still widely used in telecom industry

� Third party property

Pierre Girard, March 21, 2007

Agenda

� Use cases for Java obfuscation in Gemalto

� Functional requirements

� Security requirements

� Design directions

Pierre Girard, March 21, 2007

Obfuscation control

� Precise selection of obfuscation

� Preserve internal API / module interfaces

– Debug, reuse, future extension, legacy tools, …

� Tune the security vs performance trade-off

– Performance = timing, code-size, power consumption, …

� Integration in the build process

� Obfuscation project generation (GUI ?)

� Command line mode (make files)

� Java API

� Eclipse / Ant / Maven integration

� Reporting functionalities

� Partial build / obfuscation

Pierre Girard, March 21, 2007

Java features handling

� Reflection

� Serialization

� RMI

� Beans

� CORBA

� Resources management

� Native methods

Pierre Girard, March 21, 2007

Agenda

� Use cases for Java obfuscation in Gemalto

� Functional requirements

� Security requirements

� Design directions

Pierre Girard, March 21, 2007

Why a proprietary obfuscator (YAJO) ?

� Flexibility

� Build integration, configuration, …

� Security

� Unknown by decompilers / desobfuscators

� Yes it is security by obscurity !

� Evaluation of security level

� Possibility to implement knew / powerful obfuscation algorithms

Pierre Girard, March 21, 2007

Classical transformations classification

� Layout Obfuscation

� Remove debug information

� Change identifier names

� Data Obfuscation

� Change the way data is stored or encoded in the program

� Control Obfuscation

� Change the way the program runs

� Preventive Obfuscation

� Try to find weaknesses in current deobfuscators / decompilers to make

them crash

Pierre Girard, March 21, 2007

Agenda

� Use cases for Java obfuscation in Gemalto

� Functional requirements

� Security requirements

� Design directions

Pierre Girard, March 21, 2007

Main design principles

� Separate obfuscation framework and transformations

� Pluggable transformation modules that can be developed and
added separately

� Transformations should be more than only obfuscating transformations (for

ex : code optimisation tool / metrics / reporting)

� The obfuscation process can be integrated into build process

� Logging, error codes, command line tool, public API

Pierre Girard, March 21, 2007

Overview

Pluggable
 transformations

FRAMEWORK

Applies transformations

Initial set
of classes

Obfuscation
project file

T1

T2

…

Tn

Obfuscated set of
classes

Pierre Girard, March 21, 2007

Framework design

� Application

� Obfuscation policy and selections

� Core obfuscation engine

Pierre Girard, March 21, 2007

Application

� Load application files accessible from a classpath

� Provide enumerators on the application classes

� During the obfuscation process, modify the state of the application
according to modifications requests issued by the obfuscating
transformations

� Save the obfuscated application

Pierre Girard, March 21, 2007

Obfuscation policy

� Definition of profiles, selection and rules in a policy

� Profile = set of transformations

� Selection = set of application nodes to be transformed

� Rule = a selection and a set of transformations to be applied on
this selection

Pierre Girard, March 21, 2007

Selections

� A selection is able to select application nodes

� Tells the application to enumerate classes with their name and/or package

name or qualified name

� Within this enumeration, return only the nodes which properties match

those required by the selection

� A selection is of type package, class, method or field

Pierre Girard, March 21, 2007

Conclusion

� Still in the early stage of design

� A set of transformations need to be selected

� Security / performance need to be evaluated

