
1SWATT: softWare-based attestation for embedded devices Seshadri, A.; Perrig, A.; van Doorn, L.;
Khosla, P. Security and Privacy, 2004. Proceedings. 2004 IEEE Symposium on, Vol., Iss., 9-12 May 2004
Pages: 272- 282
2Seshadri, A., Luk, M., Shi, E., Perrig, A., van Doorn, L., and Khosla, P. 2005. “Pioneer: verifying code
integrity and enforcing untampered code execution on legacy systems”. In Proceedings of the Twentieth
ACM Symposium on Operating Systems Principles (Brighton, United Kingdom, October 23 - 26, 2005).
SOSP '05. ACM Press, New York, NY, 1-16.

Mariano Ceccato

ceccato@itc.it

Swatt: Software-based Attestation for Embedded

Devices1

Pioneer: Verifying Code Integrity and Enforcing

Untampered Code Execution on Legacy Systems2

20/03/2007 Swatt & Pioneer 2

Outline

� Verifiable code execution.

� TPM approach.

� Swatt/Pioneer approach.

� Swatt architecture.

� Pioneer architecture.

� Adoption scenarios.

20/03/2007 Swatt & Pioneer 3

The problem

Verifiable code execution:

� Verifying that some arbitrary code is executed un-
tampered on an un-trusted platform, even in the
presence of malicious software on that platform.
� The code is not modified before being invoked.

� No alternate code is executed.

� The execution state is not modified at run-time.

Adoption scenarios:

� Integrity check of network printers.
� Virus presence on smart cell phones equipped with e-

mail client.

� Software certification on e-voting machines.
� Presence of root-kit in OS-kernel.

20/03/2007 Swatt & Pioneer 4

Hardware based attestation

� TPM is used to measure the state of the platform during the boot
process.

� Malicious code is detected because it causes measurements to
deviate from the expected values.

� Measurements are stored in the Platform Configuration Registers
(PCR) within TPM.

� Remote attestation allows a party to obtain assurance in the correct
operation of a remote system.

20/03/2007 Swatt & Pioneer 5

Swatt & Pioneer

� Software based primitive to verify code execution on an un-trusted host

� It can be updated.

� No special purpose hardware is required.

� No particular CPU extension (e.g., virtualization).

� It provides run-time attestation.

� It is based on

� Challenge-response protocol.

� External trusted entity, which can not be compromised by an attacker.

� Communication link.

Client

Challenge

Response

Dispatcher

������
�����	

������
�����	
��
	

20/03/2007 Swatt & Pioneer 6

Assumptions

Dispatcher:

� It knows the exact hardware configuration of the
un-trusted client

� Memory size and architecture.

� Instruction set architecture.

� Processor clock speed.

Communication channel:

� Message origin authentication.

� Un-trusted platform can only communicate with
the dispatcher when the verifier runs.

20/03/2007 Swatt & Pioneer 7

Attacker model

� The attacker could have the complete control of the

software on the un-trusted platform (administrator

privileges)

� Applications.

� Operating system.

� Direct access to the memory.

� The attacker can not modify the hardware

� He can not load malicious firmware on disk controllers or

network interfaces.

� He can not attach more memory to the system.

� He can not replace the processor with a faster one.

20/03/2007 Swatt & Pioneer 8

SWATT

� Attestation of embedded devices:

� Cell phones, PDA

� Network printers

� Micro-controllers (fire detector, climate
monitoring)

� Sensor network

� It relies on an external verifier, because without

secure hardware a potentially compromised

device can not verify itself correctly.

20/03/2007 Swatt & Pioneer 9

Verification function

� Based on Message
Authentication Code
(MAC) of the memory
contents.

� Random key sent as
challenge prevent MAC
pre-computation attacks.

� Random memory
traversal to touch with
high probability all the
memory locations.

� Optimized
implementation and non
parallelizable.

������

�����	

�����	
���
��

20/03/2007 Swatt & Pioneer 10

Memory copy attack

� Small implementation to

prevent memory copy

attack

� The main loop takes

23 machine cycles.

� An attack consists in a

comparison and a
conditional jump

� 3 machine cycles

� +13%.

� Execution time is
predictable.

������

����������
��

���������
�
�����

���������
�

����������
��

20/03/2007 Swatt & Pioneer 11

Memory verification attack

� Verifier is replaced by

malicious verification

code.

� Old verification code is

copied into empty
memory.

� Attacker saves time when
a (0 filled) empty memory

region is check-summed
by skipping the

computation of the

checksum.

��������

������	����

����������
��

��������
���
������

�

�������� 	
���
������

�

!�����

	��
��

��������

������	����

�
���������������

20/03/2007 Swatt & Pioneer 12

� A tampered checksum computation results in time overhead.

� The adversary could use saved time to forge the checksum.

� Function implemented as sequence of XOR and AND.

� Difficult to parallelize.

� Strongly ordered.

� Optimal implementation.

()[] 4321 aaaachecksum ⊕+⊕=

() ()4321 aaaa ⊕+⊕≠

a1

a2

a3

a4

…

Checksum function

20/03/2007 Swatt & Pioneer 13

Experimental results

20/03/2007 Swatt & Pioneer 14

Pioneer: Dynamic root of trust

� It sets up the un-tampered execution environment.

� It computes a fingerprint of the whole verification function.

� It performs the integrity measurements on the executables.

� It execute the executable within the un-tampered execution

environment.

Un-trusted Platform

Verification func

Checksum code

Send function

Hash function

Executable

Un-trusted Platform

Verification func

Checksum code

Send function

Hash function

Executable

Dispatcher

Verification func

Checksum code

Send function

Hash function

Executable

Dispatcher

Verification func

Checksum code

Send function

Hash function

Executable

1. Challenge

3. Checksum

5. Hash code

7. Result (optional)

2. Compute

checksum

4. Hash 6. Invoke

20/03/2007 Swatt & Pioneer 15

Iterative checksum code

� Adversary who manipulates the input in every iteration

of the checking function causes a constant time

overhead per iteration.

Verification function

Checksum Initialization code

Checksum Loop

Epilog Code

Order of

execution

Send Function

Hash Function

20/03/2007 Swatt & Pioneer 16

Low variance in execution time

� Checking code is small enough to fit into L1 CPU

instruction cache.

� Verification function is small enough to fit into L1 CPU

data cache.

� Checksum code execute at the highest privilege level.

� All the maskable interrupts are turned off.

� Reduced number of non-issuable instruction (no out-of
order execution in superscalar processors).

� No external function (os, library) is called (the OS is
suspended).

20/03/2007 Swatt & Pioneer 17

Execution environment

� Turn off all the maskable interrupts

� Success only if running at the highest privilege level.

� Failure in case of lower privilege.

� Time overhead if running in a software virtual machine

monitor (e.g., VMware).

� Register flags, program counter and data pointer are

incorporated in each checksum iteration.

� Exception handler for all non-maskable interrupts is

replaced with the “interrupt-return” instruction.

� Call stack is used to store part of the checksum during

its computation.

20/03/2007 Swatt & Pioneer 18

How many iterations?

Adversary advantage a:

� Pre-load verification
function into L1 CPU

cache (no cache miss)

� Zero RTT

Adversary overhead o:

� Time required to forge
registers and

program/data pointer.

� Time to redirect memory
accesses.

o

ac
n

∗
>

��������
�����
������������������������

20/03/2007 Swatt & Pioneer 19

Experimental results

� RTT is evaluated considering the PING latency on
different host in the LAN segment.
� RTT < 0.25 ms

� Cache pre-warming time evaluated empirically
� 0.0016 ms

� a = 0.2516 ms
� o = 0.6 CPU cycle per iteration

� n = 1,250,000 iterations (on 2.8Ghz CPU)

� To prevent false positives n is doubled (2,500,000
iterations).

� r = time to perform 2,500,000 iterations
� If dispatcher receive the answer after r + RTT it is

considered in late.

20/03/2007 Swatt & Pioneer 20

Kernel rootkit detector

� Pioneer is used to guarantee the verifiable code execution of the Kernel
Measurement Agent (KMA).

� KMA is used to compute the hash value of the running kernel.

� KMA runs at kernel privilege.

� Kernel is hashed.

� Module pointer is checked.

� Kernel version is checked.

� Return address is checked.

Un-trusted Platform

Verification func

Checksum code

Send function

Hash function

KMA

Dispatcher

Verification func

Checksum code

Send function

Hash function

Executable

Dispatcher

Verification func

Checksum code

Send function

Hash function

Executable

1. Challenge

3. Checksum

5. Hash code

8. Result

4. Hash 6. Invoke

kernel

7. Measure

20/03/2007 Swatt & Pioneer 21

Experimental results

� Rootkit detector runs every 5 seconds.

� Computational and I/O intensive operations are
used as benchmarks.

� PostMark: file system benchmark.

� Bunzip2: uncompress all the firefox source code.

� Copy: copy of all the Linux source code (1.33
Gb).

3.2%385373Copy

1.5%21.71321.296Bunzip2

1.9%52.9952PostMark

OverheadRootkit detector Standalone Benchmark

20/03/2007 Swatt & Pioneer 22

Open issues

� Formal proof of code optimality.

� Avoid that an adversary can use mathematical

methods to generate a function that computes

the same checksum when fed with the same

input.

� Provide a checksum function which is CPU

independent.

� Increase the time overhead for an attack.

