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Outline

� Verifiable code execution.

� TPM approach.

� Swatt/Pioneer approach.

� Swatt architecture.

� Pioneer architecture.

� Adoption scenarios.
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The problem

Verifiable code execution:

� Verifying that some arbitrary code is executed un-
tampered on an un-trusted platform, even in the 
presence of malicious software on that platform.
� The code is not modified before being invoked.

� No alternate code is executed.

� The execution state is not modified at run-time.

Adoption scenarios:

� Integrity check of network printers.
� Virus presence on smart cell phones equipped with e-

mail client.

� Software certification on e-voting machines.
� Presence of root-kit in OS-kernel.
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Hardware based attestation

� TPM is used to measure the state of the platform during the boot
process.

� Malicious code is detected because it causes measurements to 
deviate from the expected values.

� Measurements are stored in the Platform Configuration Registers 
(PCR) within TPM.

� Remote attestation allows a party to obtain assurance in the correct 
operation of a remote system.
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Swatt & Pioneer

� Software based primitive to verify code execution on an un-trusted host

� It can be updated.

� No special purpose hardware is required.

� No particular CPU extension (e.g., virtualization).

� It provides run-time attestation.

� It is based on 

� Challenge-response protocol.

� External trusted entity, which can not be compromised by an attacker.

� Communication link.

Client

Challenge

Response

Dispatcher
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Assumptions

Dispatcher:

� It knows the exact hardware configuration of the 
un-trusted client

� Memory size and architecture.

� Instruction set architecture. 

� Processor clock speed.

Communication channel:

� Message origin authentication.

� Un-trusted platform can only communicate with 
the dispatcher when the verifier runs.
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Attacker model

� The attacker could have the complete control of the 

software on the un-trusted platform (administrator 

privileges)

� Applications.

� Operating system.

� Direct access to the memory.

� The attacker can not modify the hardware

� He can not load malicious firmware on disk controllers or 

network interfaces.

� He can not attach more memory to the system.

� He can not replace the processor with a faster one.
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SWATT

� Attestation of embedded devices:

� Cell phones, PDA

� Network printers

� Micro-controllers (fire detector, climate 
monitoring)

� Sensor network

� It relies on an external verifier, because without 

secure hardware a potentially compromised 

device can not verify itself correctly. 
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Verification function

� Based on Message 
Authentication Code 
(MAC) of  the memory 
contents.

� Random key sent as 
challenge prevent MAC 
pre-computation attacks.

� Random memory 
traversal to touch with 
high probability all the 
memory locations.

� Optimized 
implementation and non 
parallelizable.
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Memory copy attack

� Small implementation to 

prevent memory copy 

attack

� The main loop takes 

23 machine cycles.

� An attack consists in a 

comparison and a 
conditional jump 

� 3 machine cycles

� +13%.

� Execution time is 
predictable.
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Memory verification attack

� Verifier is replaced by 

malicious verification 

code.

� Old verification code is 

copied into empty 
memory.

� Attacker saves time when 
a (0 filled) empty memory 

region is check-summed 
by skipping the 

computation of the 

checksum.
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� A tampered checksum computation results in time overhead.

� The adversary could use saved time to forge the checksum.

� Function implemented as sequence of XOR and AND.

� Difficult to parallelize.

� Strongly ordered.

� Optimal implementation.

( )[ ] 4321 aaaachecksum ⊕+⊕=

( ) ( )4321 aaaa ⊕+⊕≠

a1

a2

a3

a4

…

Checksum function
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Experimental results
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Pioneer: Dynamic root of trust

� It sets up the un-tampered execution environment.

� It computes a fingerprint of the whole verification function.

� It performs the integrity measurements on the executables.

� It execute the executable within the un-tampered execution 

environment.
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Iterative checksum code

� Adversary who manipulates the input in every iteration 

of the checking function causes a constant time 

overhead per iteration.

Verification function

Checksum Initialization code

Checksum Loop

Epilog Code

Order of 

execution

Send Function

Hash Function



20/03/2007 Swatt & Pioneer 16

Low variance in execution time

� Checking code is small enough to fit into L1 CPU 

instruction cache.

� Verification function is small enough to fit into L1 CPU 

data cache.

� Checksum code execute at the highest privilege level.

� All the maskable interrupts are turned off.

� Reduced number of non-issuable instruction (no out-of 
order execution in superscalar processors).

� No external function (os, library) is called (the OS is 
suspended).
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Execution environment

� Turn off all the maskable interrupts

� Success only if running at the highest privilege level.

� Failure in case of lower privilege.

� Time overhead if running in a software virtual machine 

monitor (e.g., VMware).

� Register flags, program counter and data pointer are 

incorporated in each checksum iteration.

� Exception handler for all non-maskable interrupts is 

replaced with the “interrupt-return” instruction.

� Call stack is used to store part of the checksum during 

its computation.
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How many iterations?

Adversary advantage a:

� Pre-load verification 
function into L1 CPU 

cache (no cache miss) 

� Zero RTT

Adversary overhead o: 

� Time required to forge 
registers and 

program/data pointer.

� Time to redirect memory 
accesses.
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Experimental results

� RTT is evaluated considering the PING latency on 
different host in the LAN segment. 
� RTT < 0.25 ms

� Cache pre-warming time evaluated empirically
� 0.0016 ms

� a = 0.2516 ms
� o = 0.6 CPU cycle per iteration

� n = 1,250,000 iterations (on 2.8Ghz CPU)

� To prevent false positives n is doubled ( 2,500,000 
iterations).

� r = time to perform 2,500,000 iterations
� If dispatcher receive the answer after r + RTT it is 

considered in late.
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Kernel rootkit detector

� Pioneer is used to guarantee the verifiable code execution of the Kernel 
Measurement Agent (KMA).

� KMA is used to compute the hash value of the running kernel.

� KMA runs at kernel privilege.

� Kernel is hashed.

� Module pointer is checked.

� Kernel version is checked.

� Return address is checked.
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Experimental results

� Rootkit detector runs every 5 seconds.

� Computational and I/O intensive operations are 
used as benchmarks.

� PostMark: file system benchmark.

� Bunzip2: uncompress all the firefox source code.

� Copy: copy of all the Linux source code (1.33 
Gb).

3.2%385373Copy

1.5%21.71321.296Bunzip2

1.9%52.9952PostMark

OverheadRootkit detector Standalone Benchmark
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Open issues

� Formal proof of code optimality.

� Avoid that an adversary can use mathematical 

methods to generate a function that computes 

the same checksum when fed with the same 

input.

� Provide a checksum function which is CPU 

independent.

� Increase the time overhead for an attack.


