
���������	 �
	
��
�� �����
�����
��������������

Portflio/Program Name Here
36/42pt with 12pt After
Paragraph
Subheadings 20pt

�Name of Presenter

�Date (Format as Month, 2006)

Software Integrity Protection Using

Timed Executable Agents

Juan Garay, Lorenz Huelsbergen

Bell Labs, Alcatel-Lucent

{garay,lorenz}@research.bell-labs.com

���
���
������
���
��	�

Motivation

� Malware is ubiquitous and on the rise
� Spam
� Viruses
� Trojans
� Improper reconfiguration
� Keyboard loggers
� ...

� Pressing need to safeguard a system’s integrity

� Many deployed systems contain little or no hardware protections

� Our goal: Develop off-the-shelf software protections

� Perhaps not 100% secure, but

� raise the bar substantially

���
���
������
���
��	�

Software-only Integrity Protection

� Software protection mechanisms
� Can often detect if malware is present on a system

� Can make it difficult for present malware to function

� Requires no special hardware support

� Ideal for legacy systems that have become vulnerable

� Supports hierarchical integrity checking

���
���
������
���
��	

Approach: Software Agents

� Mobile code

� Typically traverses a network to carry out tasks
(secure deployment requires authentication)

� If run on a known platform, work (execution time) done by an
agent can be monitored

� Useful in many scenarios

� Including system integrity checking

���
���
������
���
��	!

TEAS: Basic Idea

Challenge: Agent carries a program to run (many agents)

Response: Program result + side effects

Challenger Responder

for(a=start; a<end ; a++)

sum+= *a;

return sum;

0xef003c2a

Bounds on execution time can help deter adversary’s
analysis of the challenge program(s)

Important: Agent may be an arbitrary program

���
���
������
���
��	"

2

Themes

• “Cryptographic time capsules:” Sending information into the
future

Important: Verifiability (of contents, “time” parameters)

• Moderately-hard functions: Not computationally infeasible to solve,

but also not easy

���
���
������
���
��	�

Talk Outline

� Definitions, assumptions and system requirements

� TEAS solutions for

� Offline Adversaries

� Online Adversaries

� TEAS applications

� Related work

� Summary

���
���
������
���
��	#

Def’s, Assumptions & System Requirements

Model:

� Collection of computational nodes in a network

� Two types of nodes:

� Secure/Trusted hosts

� Insecure clients

� Uniprocessors. CPU rate C, [C] = cycles/sec

� Memory: Code, data, unused memory and program stack

� Communication: Fairly accurate estimate of transmission delays

Bandwidth B, [B] = bits/sec

���
���
������
���
��	$

Adversaries

� Goal: Provide defense against client nodes being corrupted
and/or taken over by an attacker – the adversary

� Two adversary classes:

� Offline adversaries: Adversary tries to analyze incoming programs
(“agents”) without running them – recall static analysis

� Online adversaries: Adversary is able to run incoming programs

� Assumption: Adversary makes no changes to the client’s
hardware

� Client’s computing power is known

���� no. computation steps ≈ absolute time

���
���
������
���
��	%

TEAS Definitions

(ε,A)–TEAS = (Tgen,Tver)

(Two probabilistic algorithms, run at Challenger)

Tgen(params) →→→→ T = ((P1, o1, t1, π1), … , (Pk, ok, tk, πk))

ti = | Pi|/B + |oi|/B + D(Pi)/C

πi : “patience” threshold

Pi →→→→ (oi’,ti
’) (run at Responder)

Tver(T, (oi’,ti
’), (o2’,t2

’), … , (ok’,tk
’)) →→→→ {OK,¬OK}

If Responder is corrupted (by adv. in A), then probability that

Tver outputs OK < ε

���
���
������
���
��	��

System Requirements

� Known a priori:

� The (valid) software that runs on the Responder

� Responder’s HW configuration (memory size, processor speed)

� Ideally, Challenger and Responder are connected by a deterministic, tightly
coupled, network with known latencies. (Also more loosely coupled networks.)

� OS: Responder OS allows full and uninterrupted access (i.e., disable interrupts,
time-slicing, etc.). Provisioned to receive and execute agents. Examples: real-
time computing OSes (mobile phones, computing “appliances,” etc.)

���
���
������
���
��	��

Talk Outline

� Definitions, assumptions and system requirements

� TEAS solutions for

� Offline Adversaries

� Online Adversaries

� TEAS applications

� Related work

� Summary

���
���
������
���
��	��

TEAS for Offline Adversaries

� Offline adversary tries to analyze incoming programs without
running them. Also access to inputs and state of Responder.

� Approaches

1. Undecidability-based protection

2. (Program analysis) Complexity-based protection

���
���
������
���
��	�

Complexity-based Protection

� Program analysis background: Behavior of program P (output
values) may be determined through global data-flow analysis

� Extract P’s control flow graph (CFG) GP

� Convert GP to a reducible flow graph G’P

� Perform global data flow analysis on GP (or G’P)

� Let n be some static measure of |P|

� Extraction of CFG has complexity Ω(n)

� Rises to superlinear (Ω(n2) or higher) with certain types of branches

� CFG may not be reducible

� Note: Only deterministic program analysis [Gulwani et al.]

���
���
������
���
��	�!

Complexity-based Protection (cont’d)

� Program P : P(x) → y, fast execution time

� E.g., check memory locations, configuration values

� Global Data Flow problems (Ω(|P|2) worst case)

� “Reaching Definitions (Def-Use):” For each use of a variable, determine
all the definitions that reach that variable

� � Analysis (much) more expensive than execution

� Since we are crafting the agent, it is possible to avoid “in-practice”

analysis!

� Strategy: Generate TEAS instance with sufficiently many such

programs (k)

���
���
������
���
��	�"

Complexity-based Protection: Example

C = 109 cycles/sec, 1 instruction/cycle; B = 106 bytes/sec

|P| = 103 instructions, 4 bytes/inst.

Linear dynamic runtime � 103//// 109 = 0.000001 sec

Communication 4 ∗103//// 106 + 4////106 = 0.004004 sec

� t ≥ 0.004005 sec

Ω(n2) analysis � 0.01 sec computation time

� t’ ≥ 0.014005 sec ≈ 3.5

���
���
������
���
��	��

TEAS Agent Creation

� Need a large library of agents

� To prevent agents being “learned” by adversary

� Creation of agents by hand is possible, but tedious and

error prone

� Can agents be created automatically?

�YES, via program blinding

���
���
������
���
��	�#

Automatic Agent Generation

� Program blinding: Combine a small (hand-written) program with a
random, obliviously generated one

P* ← P ⊗ PR

� P* is difficult to predict:
(ε,n)-semantically uncertain: given P and input x, A can’t determine

y ← P(x) after n steps of analysis with prob. better than ε

� Input-sensitive blinded programs

“cross-over” operation: P* “inherits” some of P’s properties

���
���
������
���
��	�$

Automatic Agent Generation (cont’d)

� Make sure that blinded programs are

1. “hard,” e.g., contain an irreducible CFG, and

2. “input-sensitive,” i.e., blinded program’s output depends on original
program’s input (e.g., a register or memory location value)

� Experiments: VRM, 8 registers, P = LOADr0([A]), r1 ← P

Ran blinding 105 times for programs of size 25, 50, 100

���
���
������
���
��	�%

Example TEAS Construction

� pn
irred : probability that random program of size n contains an

irreducible CFG (estimated in several ways)

� Tgen generates instances that include ((1 – pn
irred), n)-uncertain agents

� (ε,Aoff)–TEAS: Tgen blinds target program with k terminating random

programs s.t.

1. every program is input-sensitive, and

2. k such that (1 – pn
irred)

k < ε

Tver:

if ∃ Pi* s.t. oi ≠ oi’ OR ti’/ ti > πi then output ¬OK

���
���
������
���
��	��

Talk Outline

� Definitions, assumptions and system requirements

� TEAS solutions for

� Offline Adversaries

� Online Adversaries

� TEAS applications

� Related work

� Summary

���
���
������
���
��	��

TEAS for Online Adversaries

� The “interpreter” attack: Dynamic (runtime) interpretation of an agent

Loads and stores from/to protected

areas are avoided, with very small
overhead

���
���
������
���
��	��

TEAS for Online Adversaries (cont’d)

code

free space

finger-
printable

non-finger-
printable

A

data

stack

Strategy: Perform “adversary fragmentation”
Force the adversary to relinquish control of the
client, or not be able to respond to queries in a
timely manner

���
���
������
���
��	�

“Adversary Fragmentation”

P1 = random permutation of memory

P1

(1/|M|,A
on

)–TEAS = (P1, P2 , P3)

���
���
������
���
��	�!

Adversary Fragmentation (cont’d)

P2 = random queries

(O(1) time)

P2

If A executes P2 , then

Responder under control of P2

Otherwise, A computes perm.
for each query
� time bound violation

or tries to keep track of
addresses
� out of memory!

(r1, r2, …)

P3 = restores original state

���
���
������
���
��	�"

TEAS Applications

Monitor integrity of

� Mobile devices such as cell phones

�Has phone been hacked?

� Set-top boxes and cable modems

�E.g., detect reconfiguration to bypass service license

� Wireless basestation components

�Detect black/grey market cards or reconfigurations

� Remote sensors perhaps deployed in hostile environments

�Ascertain veracity of data

���
���
������
���
��	��

Related Work

Other software-only schemes for integrity verification:

� Genuinity [Kemell-Jamieson, Usenix’03]: Checksum of (virtual)
memory addresses and machine-specific register values; host also
computes the checksum and times the response.

� [Shankar-Chew-Tygar, Usenix Security’04]: Genuinity is vulnerable

to fast simulation (“interpreter”) attack, below 35%.

� SWATT [Seshadri-Perrig-van Doorn-Khosla, ISCC’04]: Also
checksum of probabilistic memory traversal. Focuses on embedded
microcontrollers, with fixed processor speeds and small memory
sizes; requires knowledge of entire state being checked, and tight
coupling between host and client.

���
���
������
���
��	�#

Summary

� Malware is pernicious

� Degrades and destroys system integrity

� A new method to help stop it: TEAS

� Software-only

� Amenable to legacy systems that might now be vulnerable

� Challenge/response framework

� Challenges are arbitrary programs sent as agents

� Hard problems from complexity of program analysis

� Challenges are timed

� New technique called program blinding

� Aids in creating large libraries of agents

� Many application areas identified

���
���
������
���
��	�$

References

� J. Garay and L. Huelsbergen, “Software Integrity Protection

Using Timed Executable Agents,” ASIACCS 2006.

Available from

http://www.bell-labs.com/user/garay

���������	 �
	
��
�� �����
�����
��������������

Portflio/Program Name Here
36/42pt with 12pt After
Paragraph
Subheadings 20pt

�Name of Presenter

�Date (Format as Month, 2006)

Software Integrity Protection Using

Timed Executable Agents

Juan Garay, Lorenz Huelsbergen

Bell Labs, Alcatel-Lucent

{garay,lorenz}@research.bell-labs.com

���
���
������
���
��	 �

Questions and Answers

���
���
������
���
��	 �

Undecidability-based Protection

� Use undecidability of non-trivial program properties (Rice’s

theorem)

� Example: Compute the number of instructions a TEAS agent
executes – non-computable a priori

� Challenge: Automatic methods for generating agents with given

undecidability properties

