Alcatel-Lucent @

Software Integrity Protection Using

Timed Executable Agents

Juan Garay, Lorenz Huelsbergen
Bell Labs, Alcatel-Lucent
{garay,lorenz} @research.bell-labs.com

Motivation

Malware is ubiquitous and on the rise
Spam
Viruses
Trojans
Improper reconfiguration
Keyboard loggers

Pressing need to safeguard a system’s integrity

Many deployed systems contain little or no hardware protections

Our goal: Develop off-the-shelf software protections
Perhaps not 100% secure, but
raise the bar substantially

1 Timed Executable Agents

Software-only Integrity Protection

= Software protection mechanisms
— Can often detect if malware is present on a system
— Can make it difficult for present malware to function
— Requires no special hardware support
— |deal for legacy systems that have become vulnerable
— Supports hierarchical integrity checking

2 Timed Executable Agents

Alcatel-Lucent @

Approach: Software Agents

Mobile code

Typically traverses a network to carry out tasks
(secure deployment requires authentication)

If run on a known platform, work (execution time) done by an

agent can be monitored

Useful in many scenarios
Including system integrity checking

3 Timed Executable Agents

TEAS: Basic ldea

Challenge: Agent carries a program to run (many agents)
Response: Program result + side effects |

for (a=start; a<end ; a++)
sumt= *a;
return sum;

I ——
Challenger | g | Responder |

Oxef003c2a

Bounds on execution time can help deter adversary’s
analysis of the challenge program(s)

Important: Agent may be an arbitrary program

4 Timed Executable Agents Alcatel-Lucent @

Themes

* “Cryptographic time capsules:” Sending information into the
future

Important: Verifiability (of contents, “time” parameters)

* lloderately-hard functions: Not computationally infeasible to solve,
but also not easy

2
g Timed Executable Agents Alcatel-Lucent @

Talk Outline

Definitions, assumptions and system requirements

TEAS solutions for
Offline Adversaries
Online Adversaries

TEAS applications
Related work
Summary

Timed Executable Agents Alcatel-Lucent @

Def’s, Assumptions & System Requirements

Model:
Collection of computational nodes in a network

Two types of nodes:

Secure/Trusted hosts
Insecure clients

Uniprocessors. CPU rate C, [C] = cycles/sec
Memory: Code, data, unused memory and program stack

Communication: Fairly accurate estimate of transmission delays
Bandwidth B, [B] = bits/sec

7 Timed Executable Agents Alcatel-Lucent @

Adversaries

Goal: Provide defense against client nodes being corrupted
and/or taken over by an attacker — the adversary

Two adversary classes:

Offline adversaries. Adversary tries to analyze incoming programs
(“agents”) without running them — recall static analysis

Online adversaries: Adversary is able to run incoming programs

Assumption: Adversary makes no changes to the client’s
hardware

Client’s computing power is known
= Nno. computation steps = absolute time

8 Timed Executable Agents Alcatel-Lucent @

TEAS Definitions

(,2)-TEAS = (Tgen,Tver)
(Two probabilistic algorithms, run at Challenger)
Tgen(params) — T=((P, 04, t,), ..., (P, O t, TT,))
t = IPJl/B + lol/B + D(P,)/C
;. "patience” threshold
P. — (0/,t)) (runat Responder)
Tver(T, (0,t), (0,t,), ..., (0 ,%)) — {OK,=OK}

If Responder is corrupted (by adv. in 4), then probability that
Tver outputs OK < €

9 Timed Executable Agents Alcatel-Lucent @

System Requirements

= Known a priorr.
— The (valid) software that runs on the Responder
— Responder’s HW configuration (memory size, processor speed)

= |deally, Challenger and Responder are connected by a deterministic, tightly
coupled, network with known latencies. (Also more loosely coupled networks.)

= OS: Responder OS allows full and uninterrupted access (i.e., disable interrupts,
time-slicing, etc.). Provisioned to receive and execute agents. Examples: real-
time computing OSes (mobile phones, computing “appliances,” etc.)

in
E
wode Date . Stack
in
0 M
10 Timed Executable Agents Alcatel-Lucent @

Talk Outline

Definitions, assumptions and system requirements

Online Adversaries
TEAS applications
Related work

Summary

o

Timed Executable Agents Alcatel-Lucent @

TEAS for Offline Adversaries

Offline adversary tries to analyze incoming programs without
running them. Also access to inputs and state of Responder.

Approaches
Undecidability-based protection
(Program analysis) Complexity-based protection

12 Timed Executable Agents

Complexity-based Protection

Program analysis background: Behavior of program P (output
values) may be determined through global data-flow analysis

Extract P’s control flow graph (CFG) Gy
Convert Gp to a reducible flow graph G’;
Perform global data flow analysis on G (or G’;)

Let n be some static measure of [P|

Extraction of CFG has complexity £2(n)
Rises to superlinear (£2(n2) or higher) with certain types of branches
CFG may not be reducible

Note: Only deterministic program analysis [Gulwani et al.]

13 Timed Executable Agents Alcatel-Lucent @

Complexity-based Protection (cont'd)

Program P : P(x) — v, fastexecution time
E.g., check memory locations, configuration values

Global Data Flow problems ((IPI%) worst case)

“Reaching Definitions (Def-Use):” For each use of a variable, determine
all the definitions that reach that variable

= Analysis (much) more expensive than execution

Since we are crafting the agent, it is possible to avoid “in-practice”
analysis!

Strategy: Generate TEAS instance with sufficiently many such
programs (k)

14 Timed Executable Agents Alcatel-Lucent @

Complexity-based Protection: Example

C = 10° cycles/sec, 1 instruction/cycle; B = 106 bytes/sec
[Pl = 108 instructions, 4 bytes/inst.

Linear dynamic runtime = 10%/10° = 0.000001 sec
Communication 4 %103/ 106 + 4/10° = 0.004004 sec
= t = 0.004005 sec

€2(n?) analysis = 0.01 sec cWe

— t > 0.014005 sec — =135

15 Timed Executable Agents Alcatel-Lucent @

TEAS Agent Creation

Need a large library of agents
To prevent agents being “learned” by adversary

Creation of agents by hand is possible, but tedious and

error prone
Can agents be created automatically?
YES, via program blinding

16

Timed Executable Agents

Automatic Agent Generation

Program blinding. Combine a small (hand-written) program with a
random, obliviously generated one

P*« P® PR

AN

“cross-over” operation: P* “inherits” some of P’s properties

P* is difficult to predict:
(e,n)-semantically uncertain: given P and input x, 4 can’t determine
y < P(x) after n steps of analysis with prob. better than €

Input-sensitive blinded programs

17 Timed Executable Agents Alcatel-Lucent @

Automatic Agent Generation (cont'd)

Make sure that blinded programs are
“hard,” e.g., contain an irreducible CFG, and

“input-sensitive,” i.e., blinded program’s output depends on original
program’s input (e.g., a register or memory location value)

Experiments: VRM, 8 registers, P = LOADrO([A]), r1 « P
Ran blinding 10° times for programs of size 25, 50, 100

Instructions | n n? | n® | foward jmps | backward jmps
25 687 |48 | 1 | 2.5 1.9
50 422 159 |1 |53 4.2
100 282 126 | 1 10.7 9.6

18

Timed Executable Agents

Example TEAS Construction

P"q - Probability that random program of size n contains an
irreducible CFG (estimated in several ways)

Tgen generates instances that include ((1 - p",..4), N)-Uncertain agents

(e,4,,)-TEAS: Tgen blinds target program with k terminating random
programs s.1.

every program is input-sensitive, and
k suchthat (1-p". .)¢ <€

Tver:

if 3P* st o0’ OR t’/t>m then output -OK

19 Timed Executable Agents Alcatel-Lucent @

Talk Outline

Definitions, assumptions and system requirements

TEAS solutions for
Offline Adversaries

TEAS applications
Related work
Summary

Timed Executable Agents Alcatel-Lucent @

ES for Online Adversaries

The “interpreter’ attack: Dynamic (runtime) interpretation of an agent

/¥ agent fragment:

LOAD {Oxfe00), ci;
STORE r0, {0x1200);
JHE Oz0100;

*f

instr = GET_INSTRipc)

opl = GET 0F1ipc);

op2 = GET 0OBZ{pc);

gswitch (instr) {

LORD: if (protected(opl)) | Loads and stores from/to protected

op2 = *{translate (opl));
else

hreak;
STORE: if (protected{opl})
*{translate{opl)) = opZ;

overhead

R]

elsze
*opl = opZ;
break;
JHE if (protected{opl))
pc = translate{opl};
else
pc = opl;
break;

21 Timed Executable Agents

op? = *apl; areas are avoided, with very small

TEAS for Online Adversaries (cont'd)

\

finger-
| pri%table

o~

timely manner

non-finger-
> printable

22 Timed Executable Agents

Strategy: Perform “adversary fragmentation”

Force the adversary to relinquish control of the
client, or not be able to respond to queries in a

Alcatel-Lucent @

“Adversary Fragmentation”

P, = random permutation of memory

ad = seed;

forie =0; 1 < N; 1++) §
al = random{aZ) ;
al = random{al);

t = M[al];
M[al] = M[aZ];
M[al] = t;

h

I ——

23 Timed Executable Agents

Alcatel-Lucent @

Adversary Fragmentation (cont'd)

P, = random queries

(O(1) time) If A4 executes P,, then

Responder under control of P,

S
Otherwise, 4 computes perm.
13 T) for each query
—— — time bound violation

or tries to keep track of
addresses

P, = restores original state
= out of memory!

24 Timed Executable Agents Alcatel-Lucent @

TEAS Applications

Monitor integrity of
Mobile devices such as cell phones
Has phone been hacked?
Set-top boxes and cable modems
E.g., detect reconfiguration to bypass service license
Wireless basestation components
Detect black/grey market cards or reconfigurations
Remote sensors perhaps deployed in hostile environments
Ascertain veracity of data

25 Timed Executable Agents

Related Work

Other software-only schemes for integrity verification:

Genuinity [Kemell-Jamieson, Usenix’03]: Checksum of (virtual)
memory addresses and machine-specific register values; host also
computes the checksum and times the response.

[Shankar-Chew-Tygar, Usenix Security’04]: Genuinity is vulnerable
to fast simulation (“interpreter”) attack, below 35%.

SWATT [Seshadri-Perrig-van Doorn-Khosla, ISCC’04]: Also
checksum of probabilistic memory traversal. Focuses on embedded
microcontrollers, with fixed processor speeds and small memory
sizes; requires knowledge of entire state being checked, and tight
coupling between host and client.

26 Timed Executable Agents Alcatel-Lucent @

Summary

Malware is pernicious
Degrades and destroys system integrity

A new method to help stop it: TEAS
Software-only
Amenable to legacy systems that might now be vulnerable
Challenge/response framework
Challenges are arbitrary programs sent as agents
Hard problems from complexity of program analysis
Challenges are timed
New technique called program blinding

Aids in creating large libraries of agents
Many application areas identified

27 Timed Executable Agents

References

J. Garay and L. Huelsbergen, “Software Integrity Protection
Using Timed Executable Agents,” ASIACCS 2006.

Available from
http://www.bell-labs.com/user/garay

28 Timed Executable Agents Alcatel-Lucent @

Alcatel-Lucent @

Software Integrity Protection Using

Timed Executable Agents

Juan Garay, Lorenz Huelsbergen
Bell Labs, Alcatel-Lucent
{garay,lorenz} @research.bell-labs.com

Questions and Answers

30

Timed Executable Agents

Alcatel-Lucent @

Undecidability-based Protection

Use undecidability of non-trivial program properties (Rice’s

theorem)

Example: Compute the number of instructions a TEAS agent

executes — non-computable a priori

Challenge: Automatic methods for generating agents with given

undecidability properties

31 Timed Executable Agents

