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Abstract

In this paper, the trust model for RE-TRUST WP3 is discussed.

1 Introduction

2 Trusted components

These are the components we trust:

2.1 Trusted execution environment

An adversary has total control over the untrusted client platform. A malicious
user or program (i.e., malware) are assumed to have full privilege access to
the system, in their attempts to attack the original program P and additional
software M monitoring the integrity of P .

2.1.1 Trusted server

The trusted server is not controlled by the adversary. A simple solution to cir-
cumvent the remote entrusting problem is server side execution of the program
P . This however only protects the integrity and confidentiality of the software
functionality (i.e., program code), but not the input and output data; for in-
stance, key loggers will still be able to log passwords and other sensitive data.
Server side execution also puts a lot of processing load on the trusted server,
which is undesirable in certain applications.

2.1.2 Trusted hardware

The trusted hardware can be trusted to perform computations on data, in such a
way that the attacker does not learn anything about the data processed and/or
the operations executed. The computational power and storage capacity of
the secure hardware are limited and thus running the full functionality of the
original program P is impossible; again I/O behavior (i.e., communication be-
tween untrusted platform and trusted hardware) can always be observed and
manipulated by an attacker.
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2.1.3 Software splitting

Because execution of the original software P on either the server, or the trusted
hardware is undesirable, maybe even impossible, one could opt to only execute
security sensitive functionality in a trusted execution environment.

Approaches have been proposed to determine how the split software in open
and hidden components, that need to execute on the untrusted environment
and trusted environment respectively [24]. In some highly reactive application,
such as online games, splitting the execution of P between the untrusted client
and trusted server is unacceptable if the interactions with the remote server
are synchronous (i.e., the application blocks waiting for a response from the
server). Virtual leashing is proposed as an asynchronous solution to overcome
this potential problem [11].

2.2 Protecting data

Various cryptographic primitives exist to protect the integrity and/or confiden-
tiality of data. Cryptology has historically focussed on protecting data during
transmission. In the white-box security model, where an attacker has full con-
trol over the execution environment, traditional cryptographic algorithms are
not so strong; e.g., it is rather straightforward to extract an encryption key in
computer memory [21] or to deduce a key from cache timing information.

2.2.1 White-box cryptography

White-box cryptography [7, 8, 15] covers a set of techniques to implement a
block cipher in order to obstruct the extraction of the embedded secret key.
The main idea is to implement the block cipher as a network of lookup tables.
All the operations such as the key addition are embedded in the lookup tables,
which are then randomized to obfuscate their behavior. Typically, external
encodings are applied to increase the level of security, transforming the block
cipher Ek into an encoded implementation G ◦Ek ◦F−1. Research in this topic
is still ongoing, as several cryptanalysis have been presented [4, 12, 23] .

2.2.2 Observable cryptography

Physical observable cryptography is a new methodology mainly used for public
key primitives. This research however is still in an early stage.

2.2.3 Computing with encrypted data

The use of privacy homomorphisms as a technique to process encrypted is quite
old [1, 18]. Homomorphic functions are functions that have a relation between
operations in the (remote) encrypted domain and the local domain, i.e., there
is a relation y = f(x) → E(y) = f ′(E(x)). Research is ongoing to achieve more
complicated processing in the encrypted domain.
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2.3 Protecting software

Several techniques address these problems and try to create self-protecting soft-
ware [10, 17]. For example, code obfuscation transforms code while preserving
its functionality such that analysis becomes hard, expensive and time consum-
ing. In the meantime, related techniques are being developed to protect against
software tampering. These mechanisms typically also protect the data software
is handling to a certain extent.

2.3.1 Software obfuscation

Code obfuscation to slow down the adversary in attempts to analyze and sub-
sequently tamper software.

Code encryption...
Self modifying code as way to obfuscate software...
[9, 16, 22]
Hardware/software co-obfuscation?

2.3.2 Tamper resistant software

As code obfuscation aims to twart code analysis, self-checking code tries to
protect against tampering. Protecting code against tampering can be considered
as the problem of data authenticity, where in this context ‘data’ refers to the
program code. Aucsmith [3] was the first ot propose a scheme to implement
tamper-resistant software. Chang et al. [5] proposed a scheme based on software
guards. Their protection scheme relies on a complex network of software guards
which mutually verify each other’s integrity and that of the program’s critical
sections. The security of the scheme relies partially on hiding the obfuscated
guard code and the complexity of the guard network. Horne et al. [13] elaborated
on the same idea and proposed ‘testers’, small hashing functions that verify
the program at runtime. Other related research is oblivious hashing [6] which
interweaves hashing instructions with program instructions and which is able to
prove whether a program operated correctly or not.

2.3.3 Software watermarking

2.3.4 Software interlocking

2.3.5 Software replacement

[14]
Different functionality.

2.3.6 Software diversity

Code diversity [2] to produce substantially different implementations of the same
software functionality.
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2.3.7 Computing with encrypted functions

Encrypted functions that can be executed without prior decryption have been
described in [19, 20], and are often also refered to as function hiding. Sander
et al. describe how encrypted programs can be used to achieve protection
of algorithms against disclosure and can give way to suprisingly solutions for
seemingly unsolvable problems of software protection. The key point is to en-
crypt functions such that they remain executable, but provide encrypted results
E(y) = E(f)(x).
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