Cryptanalysis of White-Box DES Implementations

Brecht Wyseur

COSIC – K.U.Leuven (Belgium) Paris, March 2007

Orientation

White-Box Attack Context

- Fully privileged attack software shares host => Complete access to the implementation of algorithms
- Dynamic execution can be observed
- Internal details both completely visible and alterable at will

Attacker's objective: extract the embedded cryptographic key

Outline

- State-of-the-art
- White-box DES implementations
- Cryptanalysis
- Demo
- Results and Conclusions

State-of-the-art

DES (Data Encryption Standard)

Overview

- Feistel structure
- 16 rounds
- Per round:
 - Expansion
 - RoundKey addition
 - 8 S-boxes
 - Permutation

White-box transformation

White-box transformations

- T-boxes
 - 8 T-boxes with internal S-box
 - 4 Linear T-boxes (by-pass T-boxes)

White-box transformations

Internal encodings

White-box transformations

External encodings

- Protection against implementation extraction
- Protection against first and last round attacks

"Encoded variant"

White-box transformation

Detect single R-bit flips

- Change the input to a Tbox in round 1
- Observe difference propagation at the input of round 3

Observe: 2 different Tboxes affected

Distinguish X-bit flips and Restricted bit flips

Finding single bit flips

Permutation-Expansion design:

	S-box	Inputs						Ex	
		1	<u>2</u>	<u>3</u>	<u>4</u>	<u>5</u>	<u>6</u>		
	1	7	4	2	5	6	8	3	
	2	6	8	3	7	5	1	4	
	3	5	1	4	6	7	2	8	
	4	7	2	5	8	3	1	6	
	5	3	1	2	6	4	8	7	
	6	4	8	7	1	3	5	2	
	7	3	5	4	8	2	6	1	
	8	2	6	3	1	7	4	5	

S

Overview

ROUND	INFORMATION	
1	Restricted bit flips	
2		Restricted bit flips
3	Middle bit flips, T-box type	
4	Single bit flips, T-box type	Middle bit flips, T-box type
5		Single bit flips, T-box type

Obtaining the inputs to the S-boxes

Knowledge:

- Single bit flips
- Middle bit flips
- T-box types
 Idea:
- Guess S-box
- Guess Input

S

• Test differences

Key recovery

Via expansion function3 round approach

Result: 2 complementary keys (DES complementation property)

Demo

• Demo

Conclusion

- Result
 - An efficient tool to extract the secret key from a white-box DES implementation
 - Time complexity: 2^{{14} !
- Conclusion
 - Components and design choices that make DES "strong" in a black-box environment, make it weak in a black-box environment
 - Extending the idea to general 're-trust' white-box implementations (diffusion property etc.)

Uh oh!

