
Barrier Slicing for Remote Barrier Slicing for Remote

Software TrustingSoftware Trusting

Ceccato Mariano1, Mila Dalla Preda2,

Jasvir Nagra2,

Christian Collberg3, Paolo Tonella1

1Fondazione Bruno Kessler-IRST, Trento, Italy
2University of Trento, Italy

3University of Arizona, USA

20/6/2007 Barrier Slicing for Remote
Software Trusting

2

OutlineOutline

• Problem definition

• Attack model

• Barrier slicing

• Preliminary results

• Future works

20/6/2007 Barrier Slicing for Remote
Software Trusting

3

Problem definitionProblem definition

• Network application, that
needs a services by the
trusted party.

• Trusted party means to
deliver the services only
to clients that can be
trustred.

• s: state of the program P

• m = f(s)

• k = g(m)

= g(f(s))

Un-trusted party

Program P

Trusted party

Network

m

k

20/6/2007 Barrier Slicing for Remote
Software Trusting

4

Problem definitionProblem definition

P is a valid state:

A(s) = true

P is entrusted:

E(m) = true

Un-trusted party

Application

Trusted party

m = f(s)

Remote entrusting problem:

E(m) ���� A(s)

Not sound:

E(m) = true

A(s) = false

Not complete:

E(m) = false

A(s) = true

20/6/2007 Barrier Slicing for Remote
Software Trusting

5

Attack modelAttack model

Attacker on untrusted host:

• Any dynamic/static

analysis tool

• Any software (buggers,

emulators, …)

• Read/write any memory

location, register, network

message, file.

Attacks:

• Reverse engineer and

direct code change.

• Runtime modification of

the memory.

• Produce (possibly

tampered) copies of P

that run in parallel.

• Interception and change

of network messages.

20/6/2007 Barrier Slicing for Remote
Software Trusting

6

Hardware based Hardware based

attestationattestation
• Special hardware (TPM) is used to measure the state of

the platform during the boot process.

– Difficult to update

– Costly

• Malicious code is detected because it causes

measurements to deviate from the expected values.

20/6/2007 Barrier Slicing for Remote
Software Trusting

7

Software based Software based

attestation attestation

• Software based primitive to verify code execution on an un-trusted
host
– It can be updated.

– No special purpose hardware is required.

– It provides run-time attestation.

• It is based on
– Challenge-response protocol.

– Predictable checker execution time.

Client

Challenge

Response

Dispatcher

Device
memory

Device
memory

copy

20/6/2007 Barrier Slicing for Remote
Software Trusting

8

• A tampered program is running.

• The attacker computes the checksum on a correct copy.

• This attacks requires a small execution time overhead.

– Accurate execution time prediction is mandatory to reveal this
attack.

Authentic

function Data

Execute Tampered

function

Authentic

function

VulnerabilityVulnerability

Data

Execute

20/6/2007 Barrier Slicing for Remote
Software Trusting

9

Program state partitionProgram state partition

• There is a limited status (set of program variables) in an
application that we are interested in protecting.

• A sub-portion of this state (s|safe) can not modified by the
user, otherwise
– The client would receive a not-usable service or

– The server would notice it

Client

Program

Sensitive status

Not
tamperable

s = s|safe U s|unsafe

A(s) = Asafe(s|safe) Λ Aunsafe(s|unsafe)

20/6/2007 Barrier Slicing for Remote
Software Trusting

10

Trusted party

State tamperingState tampering

ŝ|safe is sent:

• Asafe(ŝ|safe) = false,

• tampering is detected

s|safe (!= ŝ|safe) is sent:

• Asafe(s|safe) = true,

• Service is not usable

• Tampering is useless

ŝ = ŝ|safe U ŝ|unsafe A(s) = Asafe(s|safe) Λ Aunsafe(s|unsafe)

Un-trusted party

ŝ

20/6/2007 Barrier Slicing for Remote
Software Trusting

11

ExampleExample

Position

Number of LapsSpeedFuel

BOX

Position

20/6/2007 Barrier Slicing for Remote
Software Trusting

12

1 time2 = System.currentTimeMillis();
2 double delta = speed * (time2 – time);
3 x = x + delta * cos(direction);
4 y = y + delta * sin(direction);
5 Server.sendPosition(x,y);
6 if (track.isInBox(x, y)){
7 gas = maxGas;
8 lastFuel = time2;
9 }
10 else {
11 gas = maxGas - (int) (time2-lastFuel);
12 if (gas < 0) {
13 gas = 0;
14 if (speed > maxSpeed /10)
15 speed = maxSpeed /10;
16 else if (speed < minSpeed/10)
17 speed = minSpeed/10;

}
}

18 time = time2;

ExampleExample

speed

x

gas

y

20/6/2007 Barrier Slicing for Remote
Software Trusting

13

Program sliceProgram slice

1 time2 = System.currentTimeMillis();
2 double delta = speed * (time2 – time);
3 x = x + delta * cos(direction);
4 y = y + delta * sin(direction);
5 Server.sendPosition(x,y);
6 if (track.isInBox(x, y)){
7 gas = maxGas;
8 lastFuel = time2;
9 }
10 else {
11 gas = maxGas - (int) (time2-lastFuel);
12 if (gas < 0) {
13 gas = 0;
14 if (speed > maxSpeed /10)
15 speed = maxSpeed /10;
16 else if (speed < minSpeed/10)
17 speed = minSpeed/10;

}
}

18 time = time2;

20/6/2007 Barrier Slicing for Remote
Software Trusting

14

Program sliceProgram slice

1 time2 = System.currentTimeMillis();
2 double delta = speed * (time2 – time);
3 x = x + delta * cos(direction);
4 y = y + delta * sin(direction);
5 Server.sendPosition(x,y);
6 if (track.isInBox(x, y)){
7 gas = maxGas;
8 lastFuel = time2;
9 }
10 else {
11 gas = maxGas - (int) (time2-lastFuel);
12 if (gas < 0) {
13 gas = 0;
14 if (speed > maxSpeed /10)
15 speed = maxSpeed /10;
16 else if (speed < minSpeed/10)
17 speed = minSpeed/10;

}
}

18 time = time2;

slice(speed, 18) =

{1, 2, 3, 4, 6, 11, 12, 14, 15, 16, 17}

20/6/2007 Barrier Slicing for Remote
Software Trusting

15

Barrier slicingBarrier slicing

1 time2 = System.currentTimeMillis();
2 double delta = speed * (time2 – time);
3 x = x + delta * cos(direction);
4 y = y + delta * sin(direction);
5 Server.sendPosition(x,y);
6 if (track.isInBox(x, y)){
7 gas = maxGas;
8 lastFuel = time2;
9 }
10 else {
11 gas = maxGas - (int) (time2-lastFuel);
12 if (gas < 0) {
13 gas = 0;
14 if (speed > maxSpeed /10)
15 speed = maxSpeed /10;
16 else if (speed < minSpeed/10)
17 speed = minSpeed/10;

}
}

18 time = time2;

Barriers

speed

x

gas

y

20/6/2007 Barrier Slicing for Remote
Software Trusting

16

BarrierBarrier slicingslicing

1 time2 = System.currentTimeMillis();
2 double delta = speed * (time2 – time);
3 x = x + delta * cos(direction);
4 y = y + delta * sin(direction);
5 Server.sendPosition(x,y);
6 if (track.isInBox(x, y)){
7 gas = maxGas;
8 lastFuel = time2;
9 }
10 else {
11 gas = maxGas - (int) (time2-lastFuel);
12 if (gas < 0) {
13 gas = 0;
14 if (speed > maxSpeed /10)
15 speed = maxSpeed /10;
16 else if (speed < minSpeed/10)
17 speed = minSpeed/10;

}
}

18 time = time2;

slice(speed, 18) =

{1, 2, 6, 11, 12, 14, 15, 16, 17}

20/6/2007 Barrier Slicing for Remote
Software Trusting

17

Client transformation 1Client transformation 1

time2 = System.currentTimeMillis();
double delta = speed * (time2 – time);
x = x + delta * cos(direction);
y = y + delta * sin(direction);
Server.sendPosition(x,y);
if (track.isInBox(x, y)){

gas = maxGas;
lastFuel = time2;
}

else {
gas = maxGas - (int) (time2-lastFuel);
if (gas < 0) {

gas = 0;
if (speed > maxSpeed /10)

speed = maxSpeed /10;
else if (speed < minSpeed/10)

speed = minSpeed/10;
}

}
time = time2;

time2 = System.currentTimeMillis();
double delta = speed * (time2 – time);
x = x + delta * cos(direction);
y = y + delta * sin(direction);
Server.sendPosition(x,y);
if (track.isInBox(x, y)){

sync();
lastFuel = time2;
}

else {
sync();
if (gas < 0) {

sync();
if (speed > maxSpeed /10)

sync();
else if (speed < minSpeed/10)

sync();
}

}
time = time2;

20/6/2007 Barrier Slicing for Remote
Software Trusting

18

Client transformation 2Client transformation 2

time2 = System.currentTimeMillis();
double delta = speed * (time2 – time);
x = x + delta * cos(direction);
y = y + delta * sin(direction);
Server.sendPosition(x,y);
if (track.isInBox(x, y)){

sync();
lastFuel = time2;
}

else {
sync();
if (gas < 0) {

sync();
if (speed > maxSpeed /10)

sync();
else if (speed < minSpeed/10)

sync();
}

}
time = time2;

time2 = System.currentTimeMillis();
double delta = speed * (time2 – time);
x = x + delta * cos(direction);
y = y + delta * sin(direction);
Server.sendPosition(x,y);
if (track.isInBox(x, y)){

sync();
lastFuel = time2;
}

else {
sync();
if (ask(“gas”) < 0) {

sync();
if (ask(“speed”) > maxSpeed /10)

sync();
else if (ask(“speed”) <minSpeed/10)

sync();
}

}
time = time2;

20/6/2007 Barrier Slicing for Remote
Software Trusting

19

Server transformationServer transformation
time2 = System.currentTimeMillis();
double delta = speed * (time2 – time);
client.receivePosition(x,y);
if (track.isInBox(x, y)){

gas = maxGas;
lastFuel = time2;

}
else {

gas = maxGas - (int) (time2-lastFuel);
if (gas < 0) {

gas = 0;
if (speed > maxSpeed /10)

speed = maxSpeed /10;
else if (speed < minSpeed/10)

speed = minSpeed/10;
}

}
time = time2;

time2 = System.currentTimeMillis();
double delta = speed * (time2 – time);
client.receivePosition(x,y);
if (A(x,y) == false)

exit(“Tampering detected“);
if (track.isInBox(x, y)){

gas = maxGas;
sync();
lastFuel = time2;

}
else {

gas = maxGas - (int) (time2-lastFuel);
sync();
if (gas < 0) {

gas = 0;
sync();
if (speed > maxSpeed /10) {

speed = maxSpeed /10;
sync(); }

else if (speed < minSpeed/10) {
speed = minSpeed/10;
sync(); }

}
}
time = time2;

20/6/2007 Barrier Slicing for Remote
Software Trusting

20

Optimizations: Optimizations:

time2 = System.currentTimeMillis();
double delta = speed * (time2 – time);
x = x + delta * cos(direction);
y = y + delta * sin(direction);
Server.sendPosition(x,y);
if (track.isInBox(x, y)){

sync();
lastFuel = time2;
}

else {
sync();
if (ask(“gas”) < 0) {

sync();
if (ask(“speed”) > maxSpeed /10)

sync();
else if (ask(“speed”) <minSpeed/10)

sync();
}

}
time = time2;

time2 = System.currentTimeMillis();
double delta = speed * (time2 – time);
x = x + delta * cos(direction);
y = y + delta * sin(direction);
Server.sendPosition(x,y);
if (track.isInBox(x, y)){

sync();
}

else {
sync();
if (ask(“gas”) < 0) {

sync();
}

}
time = time2;

time2 = System.currentTimeMillis();
double delta = speed * (time2 – time);
x = x + delta * cos(direction);
y = y + delta * sin(direction);
Server.sendPosition(x,y);
if (track.isInBox(x, y)){

sync();
}

else {
sync();
sync();

}
time = time2;

time2 = System.currentTimeMillis();
double delta = speed * (time2 – time);
x = x + delta * cos(direction);
y = y + delta * sin(direction);
Server.sendPosition(x,y);
sync();
time = time2;

20/6/2007 Barrier Slicing for Remote
Software Trusting

21

Preliminary resultsPreliminary results

• CarRace game:
– We moved the barrier slice on the server

– Each time the client needs a value computed on the
server, it asks for it from the server (communication
overhead, delay).

14% (-35%)22%

120 (-65%)185858

Barrier sliceSliceOriginal client

1172

1174

Regular messages

5.045910Received

5.035910Sent

IncreaseTrust messaged

20/6/2007 Barrier Slicing for Remote
Software Trusting

22

Open issuesOpen issues

• Does the approach scale on a real size
application?

– Communication overhead.

– Server overhead.

– Identification of the security sensitive sub-

state (s).

– Identification of the already-protected

sensitive sub-state (s|safe).

– Integration with other techniques.

20/6/2007 Barrier Slicing for Remote
Software Trusting

23

20/6/2007 Barrier Slicing for Remote
Software Trusting

24

Optimizations: Optimizations:

time2 = System.currentTimeMillis();
double delta = speed * (time2 – time);
x = x + delta * cos(direction);
y = y + delta * sin(direction);
Server.sendPosition(x,y);
if (track.isInBox(x, y)){

sync();
lastFuel = time2;
}

else {
sync();
if (ask(“gas”) < 0) {

sync();
if (ask(“speed”) > maxSpeed /10)

sync();
else if (ask(“speed”) <minSpeed/10)

sync();
}

}
time = time2;

time2 = System.currentTimeMillis();
double delta = speed * (time2 – time);
x = x + delta * cos(direction);
y = y + delta * sin(direction);
Server.sendPosition(x,y);
if (track.isInBox(x, y)){

sync();
}

else {
sync();
if (ask(“gas”) < 0) {

sync();
}

}
time = time2;

time2 = System.currentTimeMillis();
double delta = speed * (time2 – time);
x = x + delta * cos(direction);
y = y + delta * sin(direction);
Server.sendPosition(x,y);
if (track.isInBox(x, y)){

sync();
}

else {
sync();
sync();

}
time = time2;

time2 = System.currentTimeMillis();
double delta = speed * (time2 – time);
x = x + delta * cos(direction);
y = y + delta * sin(direction);
Server.sendPosition(x,y);
sync();
time = time2;

