

Is There Hope for Obfuscation?

Jasvir Nagra

Department of Computer Science University of Trento jas@nagras.com

June, 2007

Jasvir Nagra RE-TRUST

・ロン ・回 と ・ ヨ と ・ ヨ と

크

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 のへで

	3.14159	2653589793	323		
846264338327950288419					
71	69	399			
3	75	105			
	82	097			
	49	445			
	92	307			
	816	406			
	286	208			
9986		2834	8		
25342		11706798			
2148		08651			

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Outline

- Obfuscation
 - Why RE-TRUST should be interested?
 - Why is obfuscation impossible?
 - Why all hope may not be lost (yet)?

- Amitabh's Talk
 - Extended notions of obfuscation
 - What kind of obfuscation is possible?

A⊒ ▶ ∢ ∃

Why are we interested in obfuscation?

- Recreation
- Cryptography
- Distributed computing
- Protecting intellectual property (IP)

- Viruses
- Trojans
- Browser popups
- Digital Rights Management (DRM)

RE-TRUST

RE-TRUST Problem

- Potential for clients to "cheat"
 - For ranking (Olli)
 - For marketing (MS)
 - For profit
- Solution
 - Embed a private-key in each client
 - Digitally sign responses
 - Hide the private key with obfuscation

<ロ> (日) (日) (日) (日) (日)

Become Famous!

- Develop perfect obfuscation
- 2 Use obfuscation to build a provable one-way function
- **③** One-way functions prove that $P := NP \dots$

- ④ ??
- O Profit

<ロ> (日) (日) (日) (日) (日)

크

What is an Obfuscator?

Acme::Smirch Acme::Smirch converts any perl program into a version that has no letters or numbers

(日)、

- ∢ ≣ ▶

A program transformer ${\mathcal O}$ is an obfuscator if:

• $\mathcal{O}(P)$ is functionally the same as P

• The software engineering complexity $E(\mathcal{O}(P)) > E(P)$

Barak et al. Obfuscation

A program transformer $\ensuremath{\mathcal{O}}$ is an obfuscator if:

• $\mathcal{O}(P)$ is functionally the same as P

- $\mathcal{O}(P)$ is at most polynomially larger than P
- $\mathcal{O}(P)$ is at most polynomially slower than P

 O(P) is a virtual blackbox: All properties that you can determine from source-code access to O(P), you can also determine from oracle access to P with very high probability.

Why might obfuscation exist?

Pragmatic

- Program analysis
- Reverse engineering
- Software engineering

Theoretical

- Halting Problem
- Indistinguishability Problem
- Rice's Theorem

Understanding programs is already hard.

Perhaps we can make use of this hardness to build obfuscation.

Problem

Given a program P......decide whether P halts when run with an input x.

\$ java isValidPassword yellowblue
yes

\$ java Pi
3.1415926535897932384626433832795028841971693...

(ロ) (部) (注) (注) [

```
boolean halts ( String program, int arg ) {
  if ( something really clever ) {
    return true;
  else
   return false;
}
void sneaky ( String program, int arg ) {
  if ( halts ( program, int arg ) ) {
    // loop forever
    while (true) {}
                                     Note
  } else {
                                     The program
    // return immediately
                                     sneaky needs the
    return;
                                     source of the halt
  }
                                     method.
}
```

◆□ > ◆□ > ◆三 > ◆三 > 三 の Q @

Problem

Given programs P_1 and P_2 ...decide whether P_1 and P_2 compute the same function.

イロン イヨン イヨン イヨン

크

Indistinguishability Problem: Impossible

Problem

Given programs P_1 and P_2 ...decide whether P_1 and P_2 compute the same function.

```
void P1 ( ) {
   while ( true ) {}
}
```

```
void P2 ( ) {
   sneaky ( program );
}
```

(ロ) (同) (E) (E) (E)

Obfuscation Problem

?

Jasvir Nagra RE-TRUST

A program transformer $\ensuremath{\mathcal{O}}$ is an obfuscator if:

• $\mathcal{O}(P)$ is functionally the same as P

- $\mathcal{O}(P)$ is at most polynomially larger than P
- $\mathcal{O}(P)$ is at most polynomially slower than P

 O(P) is a virtual blackbox: All properties that you can determine from source-code access to O(P), you can also determine from oracle access to P with very high probability.

$$A(P')=1$$

Jasvir Nagra RE-TRUST

日本・モート・モー

$$A(P') = 1 \qquad Sim^{P'} = 1$$

Jasvir Nagra RE-TRUST

● ▶ < ミ ▶

$$A(P') = 1 \approx Sim^{P'} = 1$$

Jasvir Nagra RE-TRUST

$$Pr[A(P')=1] \approx Pr[Sim^{P'}=1]$$

How Is An Oracle Different From A Program?

Program

\$\$`;
\$: \$. \$:\$_
='*\$ (^@(%_4&~~;# ~~/,~~ ;_);;,);;#) ;=====:,.~,*,.*,./~
~;);0·, .;.); ~ ~,./00·);0·);~,.*+,.
/);;;;;(),. ;/0,./0,.;
:):/A::/A./
-1166613511111 15[15[1]1161,135(15 is -5[115 i]
"\$ " ("\$ \$ -\$[.%")).("'`" "'\$[" "'#").
'/.*?6([^6]*)6.*/\$`.++\$=.(*/``* */\$[`* */#`*).(*;`/[\\`\\`\$_]//`;
^;\$ /(\\\$_\$//*;_';+;x/\\\\$_\$//*).';e=("e-*,*/.'; "*;;;*(;)-*;;*(;)-*;('),*('),*('),*('),*('),*('),*('),*('),*
"++", ()#", (), ", (), (, (), (), (), (), (), (), (), (),
'#(''),'((\$;(\$',\$=,')<<',(++\$=+\$=),')(\$;(\$',\$=,'))/',(''');'
""\$[;" "\$"#:").[""""\$"""""""""""""""""""""""""""""""
'*\$(^@(%_+6@~;#~~@-;;;;,(),.// ,();;#~~@-);;;,.;_~~@-,./.
./@/@~~@-);;;,();.~~@-,;/@();;#~~@-,.;/ ~~@-,.
,.);););@-@~~;#~~@-,;_);~~~~@-);;;,.(),.*+);;# ~~@-,
./[*+];;;;);*+~~@*+.[;;;;./.~@;_]
~@•,;;/@,./.);*+,.:;@•~~;#~~@•,.;;* +);;
#);@-,./@,./.);*#***@-**.%***.%**@:;;,./.);;#@@- ***;;);/@:#.%;#/.;#-(@**;;;.;:#.%***** ;;()
····/@ // [8:]):=== =0
/@/@/@
);); *+8-);-(8-88-
e-);; #,./e;.);ee-;
#/.;#-(e-e
-);, .*+,./ [);;;0; ;;;;;0;0);. %;#-(
ee
5
(N
55#~ ~@~,.*+,. ,
(e-): *+)::.~ ~):):
:*+/): ~~@-):::()*+): :#~~/ @-
3,,*+3; ;#~~/[@- ~~;#~~ \$';\$;;

- Description of I/O
- Can be analysed

- Access to I/O
- Access to running time
- All you know is what you query

(a)

Obfuscating Password Functions

Original

```
boolean isValidPassword ( String password ) {
  if ( password = "yellowblue" )
    then return true;
    else return false;
}
```

Obfuscated

```
boolean isValidPassword ( String password ) {
    if (md5sum(password) = "44d3aa30c6bbd44f8f1fa2470daab8df")
        then return true;
        else return false;
}
```

<ロ> (四) (四) (三) (三) (三) (三)

• Password functions are examples of point functions

- Defined over a large domain
- Small probability of guessing

Unlearnable

- We need a function f_s that is:
 - unlearnable
 - contains a secret s
 - no algorithm using f_s as an oracle can obtain s

• given any program that computes f_s , we can compute s

• If such f_s exists, it will imply general obfuscators do *not* exist.

- Difficult to rely on features of A
 - How about a program which prints out the secret?

	3.14159	265358979	323
84		327950288	
71	69	399	
3	75	105	
	82	097	
	49	445	
	92	307	
	816	406	
	286	208	
9986		2834	8
2534	12	11706	798
2148		08651	

- Great! A gets the secret.
- Unfortunately, so does Sim

A⊒ ▶ ∢ ∃

• How about a program which prints out its own source?

- Great! A gets the secret.
- Unfortunately, so does Sim

크

A has a executable description of P! Sim does not!

3

A has a executable description of P! Sim does not!

If in a special mode, P asks for a program and the user supplies P with a program that behaves just like P then P tells the secret.

```
public class f_s {
  final long SECRET = 6793370272;
  public int pointFunction ( long x ) {
    if (x == SECRET)
     return 1;
    else
     return 0:
  }
  public void main ( long input ) {
    . . .
    System.out.println ( pointFunction (input) );
  }
}
```

◆□ > ◆□ > ◆三 > ◆三 > 三 の Q @

Point Function With A Secret Spy

```
public class f_s {
  final long SECRET = 6793370272;
  final boolean spy_mode;
  public int pointFunction ( long x ) {...}
  public void main ( long input,
                      boolean spy_mode,
                      Program program ) {
    . . .
    if ( spy_mode )
      if ( behavesLikeMe ( program ) )
        System.out.println ( SECRET );
      else
        System.out.println ( "Iuknowunothing." );
    else
      System.out.println ( pointFunction (input) );
  }
}
                                   ◆□ → ◆□ → ◆ □ → ◆ □ → ◆ □ → ◆ ○ ◆
```

```
public boolean behavesLikeMe ( Program p ) {
  int testPoint = SECRET;
  int tests = 1000;
  boolean result = true;
  do {
    if ( p.run ( testPoint ) !=
           pointFunction ( testPoint ) )
      return false;
      int testPoint = Math.randomInt();
      test --;
  } until ( test == 0 );
}
```

◆□ > ◆□ > ◆三 > ◆三 > 三 の Q @

The Secret Revealed

public void main (long input, boolean spy_mode, Program program)

Α

- Simply calls $f_s(0, true, f_s)$
- Gets the secret

Sim

- Cannot generate a program that will fool f_s
- Does not get the secret

```
if ( behavesLikeMe ( program ) )
then System.out.println ( SECRET );
else System.out.println ( encrypt(message,SECRET) );
```

- Program is secure if attacker is given only oracle-access
- Any source-code access to this encryption algorithm will reveal SECRET

• Does this matter?

• Is this an important property to hide?

• Is a oracle-free definition of obfuscation susceptible?

- Is this the only family of functions we cannot obfuscate?
 - functions that are *trying* to reveal themselves

◆□ → ◆□ → ◆ 三 → ◆ 三 → ○ へ ⊙

◆□ → ◆□ → ◆ 三 → ◆ 三 → ○ へ ⊙