Techniques For
Obfuscation:

Relaxations and New Notions

)%

Amitabh Saxena
DIT, UNITN, Trento, Italy 38100

Layout of Talk

1. Relaxed definitions of obfuscation
® Special purpose obfuscators
® Predicate obfuscators
2. Some positive results
= Point function obfuscation (Random oracles)
= Point function obfuscation (w/o ROs)

® Some predicate obfuscators

3. Some more notions of obfuscation

Preliminaries

m For any two programs (P2, , P,), we say P, ~ P,
it both programs have identical functionality

® Also extends to “approximate’ functionality (For all
but a negligible fractions of inputs, both programs
have identical outputs)

m We say any Boolean predicate n of the programs
(P, , P,) 1s a semantic predicate if

P, ~ P, implies n(P;) = n(L)

Obftuscation [Barak et al.]

Obfuscator 1s an algorithm O's.t. for all programs P
® Functionality: O(P) ~ P
w Poly Slowdown:
n Size(O(P)) < Poly (Size(P))
a Time(O(P)) < Poly(Time(P))
u [rtnal Black-Box: For all semantic predicates w, and for all
algorithms A, there exists a simulator S such that:

Pr[A(O(P))= n(P)] — Pt[SP = n(P)] = 0
B Such an obfuscator O cannot exist! [BarakO1]

By constructing a “cannibalistic” program that says:

“Feed me somebody that behaves like me, and I'll leak my secret!”

UNITN

What can we hope to achieve?

We relax some of the requirements of [BarakO1]

Obfuscator 1s an algorithm O's.t. for certain programs I
® Functionality: O(P) ~ P
w Poly Slowdown:
m Size(O(P)) < Poly (Size(P))
a Time(O(P)) < Poly(Time(P))
® [Virtnal Black-Box: For certain semantic predicates w, and for
all algorithms A, there exists a simulator S such that:

Pr{A(O(P))= n(P)] — Pr[82 = n(P)] = 0
m “Special purpose obfuscator” and/or “Predicate
obfuscator”

More Relaxations....

® Allow Random Oracles (RO)

® RO is a type of “black-box” with true randomness

= Infeasible to predict output on some input without
making an explicit query to the RO

» Infeasible to find collisions (2 inputs give same output)
® In the RO model, all participants (obfuscator,

attacker and obfuscated program) have access to
the random oracle.

m Lynn et al. use RO to securely obfuscate certain
predicates of point functions. [Lynn04]

Point Function Obfuscation [Lynn(04]

A point function outputs 1 at only one input and 0 otherwise
Password checking programs: (Password is “hello world!”)
VERIFY_PASSWORD (Input X){

If (X==“hello world!”) Then output 1;
Else output 0;

Let Random_Oracle(“hello world!’) = 813841341

VERIFY_PASSWORD_OBF (Input X){
If (Random_0Oracle(X) == 813841341) Then output 1;
Else output 0;

)
Let 7, (VERIFY_PASSWORD) denote ; ®* bit of password.

Provably secure obfuscation of predicate = for all /.

Obfuscation preserves approximate functionality!
UNITN

Point Functions with output [Lynn 04]

m Instead of 1, the function on some input a2 outputs some value 6> 1
® Obfuscation: Use two random oracles. Generate random r and store
{ r, Random_Oraclel (a, r) , Random_Oracle2 (a,) XOR b}
= Multi-point functions with output: Many point functions with output:
F, p(x) = B; if x= A,
= Obfuscation: Repeat above for each input/output pair (with different r)
m Multi-point functions for “Access control” (via directed graphs)

® Edge 7has “password” A. needed to access secret B at head node

= Can only access some node if we can prove a path from start node.

m The above method to obfuscate a multi-point function with output is
secure assuming single point function obfuscation is secure [Lynn04]

— Key idea is a “composition of obfuscations” Lemma

Point Functions [Wee(5]

[Wee05] uses the basic idea of [Lynn04] for obfuscating
point functions with random oracles.

Gives an instantiation of random oracle under assumption
that a certain type of one-way permutation exists.

These types of one-way permutations are believed to exist
(eg. RSA)

One of the few constructions where a random oracle can be
instantiated by a real function.

Caveat: Technique of [Lynn04] to convert point function
obfuscation to multi-point function obfuscation fails!

= “composition of obfuscations” Lemma does not work for [Wee05]

Predicate Obfuscation (some more)

(Learnable v/s non-learnable)

Two fundamental types of programs
m Learnable: (can re-create source code just from few I/O queries)
Program 1 (input X){
/* Ignore input */
Output 0;
h

= Not learnable: (cannot te-create source code from few I/O queries)
Program_2 (input X){
If (X == 1668801023012013) Then
Output 1;
Else Output 0;
h

m Predicate @ (P) : To decide if program Pis learnable or not.

® In other words, given Program _1i for unknown 1 < {1, 2}, to decide:

m Does there exist X such that Program_i(X) =1

Predicate Obfuscation ...
(learnable v/s non-learnable)

From previous slide, Program_2 (non-learnable) contains some
“hidden” functionality inside, while Program_1 (learnable) does not.

Applications: (perhaps) watermarking [Varnovsky03] (watermarked
program contains some hidden functionality)

Goal: Want to hide the predicate = that indicates if the program can
ever output 1 or not.

[Varnovsky03] give a method for hiding which program (from previous
slide) is given.

Their construction is based on any one-way function and information
theoretic.

We will give (for simplicity) a construction using a number-theoretic
primitive. We assume that for a composite n, with unknown factorization,

1. Computing square roots mod nis as hard as factoring n
2. Forany 1< x < n-1, such that Jacobi_Symbol (x, 7)=1, deciding if xis a quadratic
residue mod nis hard.

learnable v/s non-learnable...

Program_1 (input X){
/* Ignore input */
Output 0;

h

Program_2 (input X){
If (X == 1668801023012013) Then
Output 1;
Else Output 0;

}

Let £ be the bit-length of X such that Program_ 2(X) =1

Generate n = pq for large primes p, g (assume |£| = |n]). Let y = X®>mod n
and let » be a quadratic non-residue mod n such that Jacobi_symbol(», n)=1.

Obf Program_1 (input X){
const 1 ;
If (X?> mod n == ») Then
Output 1;
Else Output 0;
§

Obf_Program_2 (input X){
const j ;
If (X2 mod n==y) Then
Output 1;
Else Output 0;

h

Since » is a quadratic non-residue, Obf_Program_1 will never output 1.

Without factors of n we cannot decide if » (or) is a quadratic residue or not.

Hence provably secure obfuscation of the predicate 7.

More notions of obfuscation

® Indistinguishability obfuscation [Barak(01]

m [f P,~ P,, then the obfuscations O(P,) and O(P,) are
indistinguishable

® Not clear how much information is “hidden”!
m Best-possible obfuscation [Goldwasser07]

= The obfuscation O(P) leaks as little information as possible,
and is therefore the “best possible™

m Informally, any other program P’ ~ P with | P’ |=| O(P) |
leaks more information than O(P)

m Formal definitions given for circuits (but we will skip this)

® Mostly negative results! @

Obfuscating Re-Encryption

Re-encryption for asymmetric ciphers

= Given a ciphertext encrypted under Alice’s enctryption
key, transtorm it into a ciphertext under Bob’s
encryption key (without knowing Alice’s decryption
key). Thus, some sort of obfuscation 1s required.

m [Hohenberger(7] gave an obtuscation for re-encryption
using bilinear maps.
m Uses a slightly different notion of obfuscation

m “Average case secure obfuscation” — Indistinguishability of
the output of an adversary with access to obfuscated code
and that of simulator with black-box access to code.

® Drawback: Can only re-encrypt once.

End of Talk!

m Questions?

References

[Barak(01] “On the (im)possibility of obfuscating programs”,
CRYPTO 2001

[Lynn04] “Positive results and techniques for obfuscation”,

EUROCRYPT 2004
[Wee05] “On obfuscating point functions”, STOC 2005

[Varnovsky03] “On the possibility of provably secure
obfuscating programs”, PSI 2003, LNCS 2890.

|Goldwasser07] “On best possible obfuscation”, TCC 2007

[Hohenberger07] “Securely obfuscating re-encryption”, TCC
2007

