
UNITN

Techniques For Techniques For

Obfuscation:Obfuscation:
Relaxations and New NotionsRelaxations and New Notions

byby

Amitabh SaxenaAmitabh Saxena
DIT, UNITN, DIT, UNITN, TrentoTrento, Italy 38100 , Italy 38100

UNITN

Layout of TalkLayout of Talk

1.1. Relaxed definitions of obfuscationRelaxed definitions of obfuscation

�� Special purpose obfuscatorsSpecial purpose obfuscators

�� Predicate obfuscatorsPredicate obfuscators

2.2. Some positive resultsSome positive results

�� Point function obfuscation (Random oracles)Point function obfuscation (Random oracles)

�� Point function obfuscation (w/o Point function obfuscation (w/o ROsROs))

�� Some predicate obfuscatorsSome predicate obfuscators

3.3. Some more notions of obfuscationSome more notions of obfuscation

UNITN

PreliminariesPreliminaries

�� For any two programs (For any two programs (PP11 , , PP2 2), we say), we say PP11 ~ ~ PP2 2
if both programs have identical functionalityif both programs have identical functionality

�� Also extends to “approximate” functionality (For all Also extends to “approximate” functionality (For all

but a negligible fractions of inputs, both programs but a negligible fractions of inputs, both programs

have identical outputs)have identical outputs)

�� We say any Boolean predicate We say any Boolean predicate ππ of the programs of the programs

((PP11 , , PP2 2)) is a semantic predicate if is a semantic predicate if

PP11 ~ ~ PP2 2 implies implies ππ((PP1 1) =) = ππ((PP22))

UNITN

Obfuscation [Obfuscation [BarakBarak et al.]et al.]

Obfuscator is an algorithm Obfuscator is an algorithm OO s.ts.t. for all programs . for all programs PP::

�� Functionality:Functionality: O(P) ~ P O(P) ~ P

�� Poly Slowdown:Poly Slowdown:

�� Size(O(PSize(O(P)))) < < Poly (Poly (Size(PSize(P))))

�� Time(O(PTime(O(P)))) < < Poly(Time(PPoly(Time(P))))

�� Virtual BlackVirtual Black--Box:Box: For all semantic predicates For all semantic predicates ππ, and for all , and for all

algorithms algorithms AA, there exists a simulator , there exists a simulator SS such that:such that:

Pr[Pr[AA((OO((PP))=))= ππ((P P)])] –– Pr[Pr[S S P P = = ππ((P P)])] ≈≈ 00

�� Such an obfuscator Such an obfuscator O O cannot exist! cannot exist! [Barak01][Barak01]

By constructing a “cannibalistic” program that says: By constructing a “cannibalistic” program that says:

“Feed me somebody that behaves like me, and I'll leak my secret!“Feed me somebody that behaves like me, and I'll leak my secret!””

UNITN

What can we hope to achieve? What can we hope to achieve?

We relax some of the requirements of [Barak01]We relax some of the requirements of [Barak01]

Obfuscator is an algorithm Obfuscator is an algorithm OO s.ts.t. for . for certaincertain programs programs PP::
�� Functionality:Functionality: O(P) ~ P O(P) ~ P

�� Poly Slowdown:Poly Slowdown:

�� Size(O(PSize(O(P)))) < < Poly (Poly (Size(PSize(P))))

�� Time(O(PTime(O(P)))) < < Poly(Time(PPoly(Time(P))))

�� Virtual BlackVirtual Black--Box:Box: For For certaincertain semantic predicates semantic predicates ππ, and for , and for
all algorithms all algorithms AA, there exists a simulator , there exists a simulator SS such that:such that:

Pr[Pr[AA((OO((PP))=))= ππ((P P)])] –– Pr[Pr[S S P P = = ππ((P P)])] ≈≈ 00

�� ““Special purpose obfuscatorSpecial purpose obfuscator”” and/or and/or ““Predicate Predicate
obfuscatorobfuscator””

UNITN

More Relaxations….More Relaxations….

�� Allow Random Oracles (RO)Allow Random Oracles (RO)

�� RO is a type of “blackRO is a type of “black--box” with true randomnessbox” with true randomness

�� Infeasible to predict output on some input without Infeasible to predict output on some input without

making an explicit query to the ROmaking an explicit query to the RO

�� Infeasible to find collisions (2 inputs give same output)Infeasible to find collisions (2 inputs give same output)

�� In the RO model, all participants (obfuscator, In the RO model, all participants (obfuscator,

attacker and obfuscated program) have access to attacker and obfuscated program) have access to

the random oracle.the random oracle.

�� Lynn et al. use RO to securely obfuscate certain Lynn et al. use RO to securely obfuscate certain

predicates of point functions. [Lynn04]predicates of point functions. [Lynn04]

UNITN

Point Function Obfuscation [Lynn04]Point Function Obfuscation [Lynn04]

�� A point function outputs 1 at only one input and 0 otherwiseA point function outputs 1 at only one input and 0 otherwise

�� Password checking programs: Password checking programs: (Password is “hello world!”)(Password is “hello world!”)

VERIFY_PASSWORD (Input X){VERIFY_PASSWORD (Input X){

If (X==“hello world!”) Then output 1;If (X==“hello world!”) Then output 1;

Else output 0; Else output 0;

}}

Let Let Random_Oracle(“helloRandom_Oracle(“hello world!”) = 813841341world!”) = 813841341

VERIFY_PASSWORD_OBF (Input X){VERIFY_PASSWORD_OBF (Input X){

If (If (Random_Oracle(XRandom_Oracle(X) == 813841341) Then output 1;) == 813841341) Then output 1;

Else output 0; Else output 0;

}}

�� Let Let ̟̟i i (VERIFY_PASSWORD) (VERIFY_PASSWORD) denote denote i i thth bit of password.bit of password.

�� Provably secure obfuscation of predicate Provably secure obfuscation of predicate ̟̟i i for all for all i i ..

�� Obfuscation preserves approximate functionality!Obfuscation preserves approximate functionality!

UNITN

Point Functions with output [Lynn 04]Point Functions with output [Lynn 04]

�� Instead of 1, the function on some input Instead of 1, the function on some input aa outputs some value outputs some value b b > 1> 1

�� Obfuscation: Use two random oracles. Generate random Obfuscation: Use two random oracles. Generate random r r and store and store

{ { r r ,, Random_Oracle1 (Random_Oracle1 (a a , , rr) , Random_Oracle2 () , Random_Oracle2 (aa, , rr) XOR) XOR b b } }

�� MultiMulti--point functions with output: Many point functions with output:point functions with output: Many point functions with output:

FFA, B A, B (x)(x) == BBii if x if x = = AAii

�� Obfuscation: Repeat above for each input/output pair (with diffeObfuscation: Repeat above for each input/output pair (with different rent r r))

�� MultiMulti--point functions for “Access control” (via directed graphs)point functions for “Access control” (via directed graphs)

�� Edge Edge ii has “password” has “password” AAi i needed to access secret needed to access secret BBii at head node at head node

�� Can only access some node if we can prove a path from start nodeCan only access some node if we can prove a path from start node..

�� The above method to obfuscate a multiThe above method to obfuscate a multi--point function with output is point function with output is
secure assuming single point function obfuscation is secure [Lynsecure assuming single point function obfuscation is secure [Lynn04]n04]

�� Key idea is a “composition of obfuscations” LemmaKey idea is a “composition of obfuscations” Lemma

UNITN

Point Functions [Wee05]Point Functions [Wee05]

�� [Wee05] uses the basic idea of [Lynn04] for obfuscating [Wee05] uses the basic idea of [Lynn04] for obfuscating
point functions with random oracles.point functions with random oracles.

�� Gives an instantiation of random oracle under assumption Gives an instantiation of random oracle under assumption
that a certain type of onethat a certain type of one--way permutation exists.way permutation exists.

�� These types of oneThese types of one--way permutations are believed to exist way permutations are believed to exist
((egeg. RSA). RSA)

�� One of the few constructions where a random oracle can be One of the few constructions where a random oracle can be
instantiated by a real function. instantiated by a real function.

�� Caveat: Caveat: Technique of [Lynn04] to convert point function Technique of [Lynn04] to convert point function
obfuscation to multiobfuscation to multi--point function obfuscation fails!point function obfuscation fails!

�� “composition of obfuscations” Lemma does not work for [Wee05]“composition of obfuscations” Lemma does not work for [Wee05]

UNITN

Predicate Obfuscation (some more)Predicate Obfuscation (some more)

((Learnable Learnable v/sv/s nonnon--learnable)learnable)

Two fundamental types of programsTwo fundamental types of programs
�� Learnable: (can reLearnable: (can re--create source code just from few I/O queries) create source code just from few I/O queries)

Program_1 (input X){Program_1 (input X){

/* Ignore input *//* Ignore input */

Output 0;Output 0;

}}

�� Not learnable: (cannot reNot learnable: (cannot re--create source code from few I/O queries)create source code from few I/O queries)

Program_2 (input X){Program_2 (input X){

If (X == 1668801023012013) ThenIf (X == 1668801023012013) Then

Output 1;Output 1;
Else Output 0;Else Output 0;

}}

�� Predicate Predicate ̟̟ ((P P) : To decide if program) : To decide if program PP is learnable or not.is learnable or not.

�� In other words, given In other words, given Program_iProgram_i for unknown for unknown i i ←← {1, 2}, to decide:{1, 2}, to decide:

�� Does there exist Does there exist XX such that such that Program_i(XProgram_i(X)) = 1 ?= 1 ?

UNITN

Predicate Obfuscation …Predicate Obfuscation …
(learnable (learnable v/sv/s nonnon--learnable)learnable)

�� From previous slide, Program_2 (nonFrom previous slide, Program_2 (non--learnable) contains some learnable) contains some
“hidden” functionality inside, while Program_1 (learnable) does “hidden” functionality inside, while Program_1 (learnable) does not. not.

�� Applications:Applications: (perhaps) watermarking [Varnovsky03] (watermarked (perhaps) watermarking [Varnovsky03] (watermarked
program contains some hidden functionality)program contains some hidden functionality)

�� Goal:Goal: Want to hide the predicate Want to hide the predicate ̟̟ that indicates if the program can that indicates if the program can
ever output 1 or not.ever output 1 or not.

�� [Varnovsky03] give a method for hiding which program (from previ[Varnovsky03] give a method for hiding which program (from previous ous
slide) is given. slide) is given.

�� Their construction is based on any oneTheir construction is based on any one--way function and information way function and information
theoretic. theoretic.

�� We will give (for simplicity) a construction using a numberWe will give (for simplicity) a construction using a number--theoretic theoretic
primitive. We assume that fprimitive. We assume that for a composite or a composite nn, with unknown factorization,, with unknown factorization,

1.1. Computing square roots Computing square roots mod mod n n is as hard as factoring is as hard as factoring nn

2.2. For any 1 < For any 1 < x x < < nn--11, such that , such that Jacobi_SymbolJacobi_Symbol (x, (x, nn)=1, deciding if)=1, deciding if x x is a quadratic is a quadratic
residue residue mod mod nn is hard.is hard.

UNITN

learnable learnable v/sv/s nonnon--learnable…learnable…

�� Let Let k k be the bitbe the bit--length of X such that Program_2(X) = 1length of X such that Program_2(X) = 1

�� Generate Generate nn = = pqpq for large primes for large primes pp,, qq (assume |(assume |kk| = || = |nn||). Let). Let y = y = XX2 2 mod mod nn
andand let let ww be a quadratic nonbe a quadratic non--residue residue modmod nn such that such that Jacobi_symbol(Jacobi_symbol(ww, , nn)=1.)=1.

�� Since Since w w is a quadratic nonis a quadratic non--residue, residue, Obf_Program_1Obf_Program_1 will never output 1.will never output 1.

�� Without factors of Without factors of n n we cannot decide if we cannot decide if w w (or (or yy)) is a quadratic residue or not.is a quadratic residue or not.

�� Hence provably secure obfuscation of the predicate Hence provably secure obfuscation of the predicate ̟̟..

Program_1 (input X){Program_1 (input X){

/* Ignore input *//* Ignore input */

Output 0;Output 0;

}}

Program_2 (input X){Program_2 (input X){

If (X == 1668801023012013) ThenIf (X == 1668801023012013) Then

Output 1;Output 1;

Else Output 0;Else Output 0;

}}

Obf_Program_1 (input X){Obf_Program_1 (input X){

const const w w ;;

If (XIf (X22 modmod nn == == w w) Then) Then

Output 1;Output 1;

Else Output 0;Else Output 0;

}}

Obf_Program_2 (input X){Obf_Program_2 (input X){

const const y y ;;

If (XIf (X22 modmod nn == == y y) Then) Then

Output 1;Output 1;

Else Output 0;Else Output 0;

}}

UNITN

More notions of obfuscationMore notions of obfuscation

�� IndistinguishabilityIndistinguishability obfuscation [Barak01]obfuscation [Barak01]

�� If If PP1 1 ~ ~ PP22 , then the obfuscations , then the obfuscations OO((PP1 1) and) and OO((PP2 2)) are are
indistinguishableindistinguishable

�� Not clear how much information is “hidden”!Not clear how much information is “hidden”!

�� BestBest--possible obfuscation [Goldwasser07]possible obfuscation [Goldwasser07]

�� The obfuscation The obfuscation OO((PP)) leaks as little information as possible, leaks as little information as possible,
and is therefore the “best possible”and is therefore the “best possible”

�� Informally, any other program Informally, any other program P’ ~ PP’ ~ P with |with |P’ P’ ||≤≤||OO((PP))| |
leaks more information than leaks more information than OO((PP))

�� Formal definitions given for circuitsFormal definitions given for circuits (but we will skip this)(but we will skip this)

�� Mostly negative results! Mostly negative results! ��������

UNITN

Obfuscating ReObfuscating Re--EncryptionEncryption

ReRe--encryption for asymmetric ciphersencryption for asymmetric ciphers

�� Given a Given a ciphertextciphertext encrypted under Alice’s encryption encrypted under Alice’s encryption
key, transform it into a key, transform it into a ciphertextciphertext under Bob’s under Bob’s
encryption key (without knowing Alice’s decryption encryption key (without knowing Alice’s decryption
key). Thus, some sort of obfuscation is required.key). Thus, some sort of obfuscation is required.

�� [Hohenberger07] gave an obfuscation for re[Hohenberger07] gave an obfuscation for re--encryption encryption
using bilinear maps.using bilinear maps.

�� Uses a slightly different notion of obfuscationUses a slightly different notion of obfuscation
�� “Average case secure obfuscation” “Average case secure obfuscation” –– IndistinguishabilityIndistinguishability of of
the output of an adversary with access to obfuscated code the output of an adversary with access to obfuscated code
and that of simulator with blackand that of simulator with black--box access to code.box access to code.

�� Drawback: Drawback: Can only reCan only re--encrypt once. encrypt once.

UNITN

End of Talk!End of Talk!

�� Questions?Questions?

UNITN

ReferencesReferences

[Barak01] “On the (im)possibility of obfuscating programs”,

CRYPTO 2001

[Lynn04] “Positive results and techniques for obfuscation”,

EUROCRYPT 2004

[Wee05] “On obfuscating point functions”, STOC 2005

[Varnovsky03] “[Varnovsky03] “On the possibility of provably secure

obfuscating programs”, PSI 2003, LNCS 2890.

[Goldwasser07] “On best possible obfuscation”, TCC 2007

[Hohenberger07] “Securely obfuscating re[Hohenberger07] “Securely obfuscating re--encryption”, TCC encryption”, TCC

20072007

