Techniques For Obfuscation:
Relaxations and New Notions

by

Amitabh Saxena
DIT, UNITN, Trento, Italy 38100
Layout of Talk

1. Relaxed definitions of obfuscation
 - Special purpose obfuscators
 - Predicate obfuscators

2. Some positive results
 - Point function obfuscation (Random oracles)
 - Point function obfuscation (w/o ROs)
 - Some predicate obfuscators

3. Some more notions of obfuscation
For any two programs \((P_1, P_2) \), we say \(P_1 \sim P_2 \) if both programs have identical functionality.

- Also extends to “approximate” functionality (For all but a negligible fractions of inputs, both programs have identical outputs).

We say any Boolean predicate \(\pi \) of the programs \((P_1, P_2) \) is a semantic predicate if

\[
P_1 \sim P_2 \text{ implies } \pi(P_1) = \pi(P_2)
\]
Obfuscation [Barak et al.]

Obfuscator is an algorithm O s.t. for all programs P:

- **Functionality**: $O(P) \sim P$
- **Poly Slowdown**:
 - $\text{Size}(O(P)) < \text{Poly}(\text{Size}(P))$
 - $\text{Time}(O(P)) < \text{Poly}(\text{Time}(P))$
- **Virtual Black-Box**: For all semantic predicates π, and for all algorithms A, there exists a simulator S such that:

$$\Pr[A(O(P)) = \pi(P)] - \Pr[S^{P} = \pi(P)] \approx 0$$

- Such an obfuscator O cannot exist! [Barak01]

By constructing a “cannibalistic” program that says:

“Feed me somebody that behaves like me, and I'll leak my secret!”
What can we hope to achieve?

We relax some of the requirements of [Barak01]

Obfuscator is an algorithm O s.t. for certain programs P:

- **Functionality:** $O(P) \sim P$
- **Poly Slowdown:**
 - $\text{Size}(O(P)) < \text{Poly}(\text{Size}(P))$
 - $\text{Time}(O(P)) < \text{Poly}(\text{Time}(P))$
- **Virtual Black-Box:** For certain semantic predicates π, and for all algorithms A, there exists a simulator S such that:

 $$\Pr[A(O(P)) = \pi(P)] - \Pr[S^P = \pi(P)] \approx 0$$

- “Special purpose obfuscator” and/or “Predicate obfuscator”
More Relaxations….

- Allow Random Oracles (RO)
- RO is a type of “black-box” with true randomness
 - Infeasible to predict output on some input without making an explicit query to the RO
 - Infeasible to find collisions (2 inputs give same output)
- In the RO model, all participants (obfuscator, attacker and obfuscated program) have access to the random oracle.
- Lynn et al. use RO to securely obfuscate certain predicates of point functions. [Lynn04]
Point Function Obfuscation [Lynn04]

- A point function outputs 1 at only one input and 0 otherwise
- Password checking programs: (Password is “hello world!”)

  ```
  VERIFY_PASSWORD (Input X){
    If (X==“hello world!”) Then output 1;
    Else output 0;
  }
  ```

 Let Random_Oracle(“hello world!”) = 813841341

  ```
  VERIFY_PASSWORD_OBF (Input X){
    If (Random_Oracle(X) == 813841341) Then output 1;
    Else output 0;
  }
  ```

- Let $\pi_i(VERIFY_PASSWORD)$ denote i^{th} bit of password.
- Provably secure obfuscation of predicate π_i for all i.
- Obfuscation preserves approximate functionality!
Point Functions with output [Lynn 04]

- Instead of 1, the function on some input a outputs some value $b > 1$
 - Obfuscation: Use two random oracles. Generate random r and store
 \{ r, Random_Oracle1 (a, r), Random_Oracle2 (a, r) XOR b \}

- Multi-point functions with output: Many point functions with output:
 \[
 F_{A, B}(x) = B_i \text{ if } x = A_i
 \]
 - Obfuscation: Repeat above for each input/output pair (with different r)

- Multi-point functions for “Access control” (via directed graphs)
 - Edge i has “password” A_i needed to access secret B_i at head node
 - Can only access some node if we can prove a path from start node.

- The above method to obfuscate a multi-point function with output is
 secure assuming single point function obfuscation is secure [Lynn04]
 - Key idea is a “composition of obfuscations” Lemma
[Wee05] uses the basic idea of [Lynn04] for obfuscating point functions with random oracles.

Gives an instantiation of random oracle under assumption that a certain type of one-way permutation exists.

These types of one-way permutations are believed to exist (eg. RSA).

One of the few constructions where a random oracle can be instantiated by a real function.

Caveat: Technique of [Lynn04] to convert point function obfuscation to multi-point function obfuscation fails!

- “composition of obfuscations” Lemma does not work for [Wee05]
Predicate Obfuscation (some more)

(Learnable v/s non-learnable)

Two fundamental types of programs

- Learnable: (can re-create source code just from few I/O queries)

  ```
  Program_1 (input X)
  /* Ignore input */
  Output 0;
  ```

- Not learnable: (cannot re-create source code from few I/O queries)

  ```
  Program_2 (input X)
  If (X == 1668801023012013) Then
    Output 1;
  Else
    Output 0;
  ```

- Predicate $\pi (P)$: To decide if program P is learnable or not.

- In other words, given Program$_i$ for unknown $i \leftarrow \{1, 2\}$, to decide:

 - Does there exist X such that Program$_i(X) = 1$?
Predicate Obfuscation …
(learnable v/s non-learnable)

- From previous slide, Program_2 (non-learnable) contains some “hidden” functionality inside, while Program_1 (learnable) does not.

- **Applications:** (perhaps) watermarking [Varnovsky03] (watermarked program contains some hidden functionality)

- **Goal:** Want to hide the predicate π that indicates if the program can ever output 1 or not.

- [Varnovsky03] give a method for hiding which program (from previous slide) is given.

- Their construction is based on any one-way function and information theoretic.

- We will give (for simplicity) a construction using a number-theoretic primitive. We assume that for a composite n, with unknown factorization,
 1. Computing square roots $\mod n$ is as hard as factoring n
 2. For any $1 < x < n-1$, such that Jacobi_Symbol $(x, n)=1$, deciding if x is a quadratic residue $\mod n$ is hard.
learnable v/s non-learnable...

Let k be the bit-length of X such that $\text{Program} _2(X) = 1$

Generate $n = pq$ for large primes p, q (assume $|k| = |n|$). Let $y = X^2 \mod n$ and let w be a quadratic non-residue $\mod n$ such that $\text{Jacobi}_\text{symbol}(w, n)=1$.

Since w is a quadratic non-residue, $\text{Obf}_\text{Program} _1$ will never output 1.

Without factors of n we cannot decide if w (or y) is a quadratic residue or not.

Hence provably secure obfuscation of the predicate π.

Program_1 (input X){
 /* Ignore input */
 Output 0;
}

Program_2 (input X){
 If (X == 1668801023012013) Then
 Output 1;
 Else
 Output 0;
}

Obf_Program_1 (input X){
 const w ;
 If (X$^2 \mod n == w$) Then
 Output 1;
 Else
 Output 0;
}

Obf_Program_2 (input X){
 const y ;
 If (X$^2 \mod n == y$) Then
 Output 1;
 Else
 Output 0;
}
More notions of obfuscation

- Indistinguishability obfuscation [Barak01]
 - If $P_1 \sim P_2$, then the obfuscations $O(P_1)$ and $O(P_2)$ are indistinguishable.
 - Not clear how much information is “hidden”!

- Best-possible obfuscation [Goldwasser07]
 - The obfuscation $O(P)$ leaks as little information as possible, and is therefore the “best possible”.
 - Informally, any other program $P' \sim P$ with $|P'| \leq |O(P)|$ leaks more information than $O(P)$.
 - Formal definitions given for circuits (but we will skip this).
 - Mostly negative results! 😞
Obfuscating Re-Encryption

Re-encryption for asymmetric ciphers

- Given a ciphertext encrypted under Alice’s encryption key, transform it into a ciphertext under Bob’s encryption key (without knowing Alice’s decryption key). Thus, some sort of obfuscation is required.
- [Hohenberger07] gave an obfuscation for re-encryption using bilinear maps.
- Uses a slightly different notion of obfuscation
 - “Average case secure obfuscation” – Indistinguishability of the output of an adversary with access to obfuscated code and that of simulator with black-box access to code.
- **Drawback:** Can only re-encrypt once.
End of Talk!

- Questions?
References

[Barak01] “On the (im)possibility of obfuscating programs”, CRYPTO 2001

[Lynn04] “Positive results and techniques for obfuscation”, EUROCRYPT 2004

[Wee05] “On obfuscating point functions”, STOC 2005

[Hohenberger07] “Securely obfuscating re-encryption”, TCC 2007