

Report of Task 3.2 break-out meeting

KUL – Dries, Thomas, Jan, Brecht
POLITO – Stefano, Paolo

Task objectives

 Use of light-weight HW to ensure software
confidentiality and software integrity

 Light-weight HW:
 TPM, SC, USB dongle

Discussions outline

 Advantages of using HW
 SW Confidentiality
 SW Integrity
 Practical solution

Advantages of using HW

 Controlled latency
 Adv: possibly better time-based verification

 Delegated verification
 Adv: scalability
 But: not necessarily cheaper

 Identification
 Adv: diversification; impossible identity theft
 But: proxy attack still possible

Identification

 Issues
 proxy attack (through back door)
 identity theft (considered impossible to extract the

secret key)

 Possible solutions
 Proxy:

 Limit possible nr of identifications
 Use of controlled latency

 Theft:
 Confidential channel from server to HW

SW Confidentiality

 Hide original program
 Software splitting
 Code decryption on HW

 But: dynamic analysis eventually reveals 'all' code
 Hide control flow information
 Data (critical variables)

 Hide monitor functionality
 Examples:

 Computation of invariants
 Checksum algorithms

SW Integrity

 Confidentiality requirements usually imply
integrity requirements

 Sometimes integrity is required without
confidentiality being required.

How to transfer integrity from the trusted HW to
the whole program.

Practical solution is ongoing research within track
3.2

Practical

 SW integrity verification based on invariants.
 Tracing variables
 Verification of invariants (using traces of variables)

 Server delegates parts of invariants verification
to the HW

Practical (2)

 Extensions:
 hide which variables are 'traced' (trace more, and

filter in HW)
 dynamically replace verification algorithm
 use of probabilistic encryption (=> attacker does not

know what the result means)
 use of challenge-response system

