Report of Task 3.2 break-out meeting

KUL – Dries, Thomas, Jan, Brecht POLITO – Stefano, Paolo

Task objectives

- Use of light-weight HW to ensure software confidentiality and software integrity
- Light-weight HW:
 - TPM, SC, USB dongle

Discussions outline

- Advantages of using HW
- SW Confidentiality
- SW Integrity
- Practical solution

Advantages of using HW

- Controlled latency
 - Adv: possibly better time-based verification
- Delegated verification
 - Adv: scalability
 - But: not necessarily cheaper
- Identification
 - Adv: diversification; impossible identity theft
 - But: proxy attack still possible

Identification

Issues

- proxy attack (through back door)
- identity theft (considered impossible to extract the secret key)
- Possible solutions
 - Proxy:
 - Limit possible nr of identifications
 - Use of controlled latency
 - Theft:
 - Confidential channel from server to HW

SW Confidentiality

- Hide original program
 - Software splitting
 - Code decryption on HW
 - But: dynamic analysis eventually reveals 'all' code
 - Hide control flow information
 - Data (critical variables)
- Hide monitor functionality
 - Examples:
 - Computation of invariants
 - Checksum algorithms

SW Integrity

- Confidentiality requirements usually imply integrity requirements
- Sometimes integrity is required without confidentiality being required.

How to transfer integrity from the trusted HW to the whole program.

Practical solution is ongoing research within track 3.2

Practical

- SW integrity verification based on invariants.
 - Tracing variables
 - Verification of invariants (using traces of variables)
- Server delegates parts of invariants verification to the HW

Practical (2)

Extensions:

- hide which variables are 'traced' (trace more, and filter in HW)
- dynamically replace verification algorithm
- use of probabilistic encryption (=> attacker does not know what the result means)
- use of challenge-response system