Self-encrypting Code
to Protect against
Analysis and Tampering

Jan Cappaert
K.U.Leuven/ESAT/COSIC

September 25th, 2007

Contents

Introduction
— Software Protection

State of the Art

— Software Guards
— Integrity-based Encryption

Tamper and analysis resistance
— Crypto guards

Conclusions

Software Protection

* |nstalling software on a client
— the owner looses all control @
— the software has to protect itself l Install /

against the possibly malicious host
(software and user)

» Software protection is a
collection of all techniques that
protect software applications
against analysis and tampering.

Download

Malicious host / user
Full privileges

Software Protection

* An attack typically consists of 2 phases:
1. Analysis

2. Tampering
* An example:

1. A company can extract an algorithm, implemented
by a competitor, steal it and use it in its own
application.

2. A malicious user modifies the expiration

procedure of a software application so he can use
it for an extended period of time.

Software Protection

» Software protection techniques

1. Against analysis:
— Code obfuscation
— White-box cryptography

— Code encryption
2. Against tampering:
— Code verification

Software Protection

Protection against
Technique Analysis Tampering
Static | Dyn. | Static| Dyn.
Verification N N F P
Encryption F N F N
Obfuscation P P P P
WB crypto F P F F

N = None P =Partial F = Full

State of the Art

“Software guards” by Chang and
Atallah, DRM'01

“Testers” by Horne et al. ‘01

“Integrity-based encryption” by Lee et
al.,’04

Software Guards

 Memory layout:

repairs

checksums checksums

checksums :
repairs

lon

Execut

(see CFG)

Software guards

 [Testers and Correctors
— Reversible hash function
— Watermark

C1 Co C3 C4q Cs Cg
(discarded) : ' '

S1 i e1

52 E €2
|

83 ! es

S4

c7

€4

S5

€5

code section

Integrity-based Encryption

 Memory layout:

Decrypt

Decrypt Decrypt

Analysis and Tamper

Resistance
Technique Protection against
Analysis Tampering
Static | Dyn. | Static| Dyn.
Encryption F N F N
Problems:

— Code in clear when executed
— No dynamic verification (cfr. guards)

A New Scheme

e Scheme 1: callee =D E

before call

* Scheme 2: Scheme 1 + re-encrypt after
return

e Scheme 3: Scheme 2 + E
after call, caller = D (E
before return

callee))

caﬂer(caﬂer(

caller))
caller))

caﬂee(

callee caﬂee(

A New Scheme

i i hash()

i Dhash()

Scheme Properties

» Code encryption
-> confidentiality

» Code dependencies (code as key) ==
implicit dynamic checking
-> data authenticity (or integrity)
* Scheme

-> Fault propagation with nesting

Scheme Problems

« Multiple callers —
which code as key ?
— n callers
— 1 out of n

* Orrely on E(code)
as key
— n callers

errt counter ™ report
perrt oetword
error_print isword

Scheme Cost

. T(P")
 Costinspeed > C/(P,P")=
p (P,P') 7(P)
Program |Scheme 1 |Scheme 2 |Scheme 3
du 0.899 3.612 8.364
tar 0.822 1.339 2.783
WC 0.989 39.017 91.093

* After inlining the guards, C_(wc) ~ 1000

Improvements

* callee = Ddominator(E

* Test framework
— Diablo
— SPEC CPU2006

* First results for Scheme 1
— Bzip2 - 60 times slower

callee))

dominator(

Dominators in a Call Graph

-
= o
==
=
==
=], E L[| [AR ozl
— P g
I 0x804cbe8 -
handle compress =]
/ \ e
0x804de9c 0x804dcf8 —
| BZ2_compressBlock copy_input_until stop =
|~ o
\ L =R
1 : il
0x804e854 0x804dc00
generateM TFValues add_pair_to_block P

o e

ETIEIEI

Further Improvements

Avoid hot code (frequently executed)

More optimal E() and D() functions
— Size/speed versus security

Obfuscation to hide crypto guards

Interweave guard code with program
code

Conclusions

* Theory
— Perfect security?

— "Attack on checksumming-based software”
by Wurster et al. IEEE-SSP’05

— “Strengthening self-checksumming via self-
modifying” by Giffin et al. ACSAC'05

Conclusions

* Practice
— Another layer of security
« Self-modifying code is hard to analyze

— Security-versus-cost trade-off
« Performance overhead

