
Self-encrypting Code

to Protect against

Analysis and Tampering

Jan Cappaert

K.U.Leuven/ESAT/COSIC

September 25th, 2007



Contents

• Introduction

– Software Protection

• State of the Art

– Software Guards

– Integrity-based Encryption

• Tamper and analysis resistance

– Crypto guards

• Conclusions



Software Protection

• Installing software on a client

– the owner looses all control

– the software has to protect itself

against the possibly malicious host 

(software and user)

• Software protection is a 

collection of all techniques that 

protect software applications 

against analysis and tampering. Malicious host / user

Full privileges

Install /

Download



Software Protection

• An attack typically consists of 2 phases:
1. Analysis

2. Tampering

• An example:
1. A company can extract an algorithm, implemented 
by a competitor, steal it and use it in its own 
application.

2. A malicious user modifies the expiration 
procedure of a software application so he can use 
it for an extended period of time.



Software Protection

• Software protection techniques

1. Against analysis:
– Code obfuscation

– White-box cryptography

– …

– Code encryption

2. Against tampering:
– Code verification

– …



Software Protection

Dyn.StaticDyn.Static

PFNNVerification

TamperingAnalysis

FFPFWB crypto

PPPPObfuscation

NFNFEncryption

Protection against

Technique

N = None P = Partial F = Full



State of the Art

• “Software guards” by Chang and 

Atallah, DRM’01

• “Testers” by Horne et al. ‘01

• “Integrity-based encryption” by Lee et 

al.,’04

• …



Software Guards

• Memory layout:



• Execution 

(see CFG)



Software guards

• Testers and Correctors

– Reversible hash function

– Watermark



Integrity-based Encryption

• Memory layout:



Analysis and Tamper 

Resistance

• Problems:

– Code in clear when executed

– No dynamic verification (cfr. guards)

NFNFEncryption

Dyn.StaticDyn.Static

TamperingAnalysis

Protection againstTechnique



A New Scheme

• Scheme 1: callee = Dcaller(Ecaller(callee))

before call

• Scheme 2: Scheme 1 + re-encrypt after 

return

• Scheme 3: Scheme 2 + Ecallee(caller)) 

after call, caller = Dcallee(Ecallee(caller)) 

before return



A New Scheme

callee

caller

call

“guard”

call

Dhash()

hash()

call

call

Dhash()

hash()



Scheme Properties

• Code encryption

� confidentiality

• Code dependencies (code as key) == 

implicit dynamic checking

� data authenticity (or integrity)

• Scheme

� Fault propagation with nesting



Scheme Problems

• Multiple callers –

which code as key ?

– n callers

– 1 out of n

– …

• Or rely on E(code) 

as key

– n callers

– …



Scheme Cost

• After inlining the guards, Cs(wc) ~ 1000

91.09339.0170.989wc

2.7831.3390.822tar

8.3643.6120.899du

Scheme 3Scheme 2Scheme 1Program

Cs(P,P') =

T(P')

T(P)
• Cost in speed �



Improvements

• callee = Ddominator(Edominator(callee))

• Test framework

– Diablo

– SPEC CPU2006

• First results for Scheme 1

– Bzip2 � 60 times slower



Dominators in a Call Graph



Further Improvements

• Avoid hot code (frequently executed)

• More optimal E() and D() functions

– Size/speed versus security

• Obfuscation to hide crypto guards

• Interweave guard code with program 
code

• …



Conclusions

• Theory

– Perfect security?

– “Attack on checksumming-based software”

by Wurster et al. IEEE-SSP’05

– “Strengthening self-checksumming via self-

modifying” by Giffin et al. ACSAC’05

– …



Conclusions

• Practice

– Another layer of security

• Self-modifying code is hard to analyze

– Security-versus-cost trade-off

• Performance overhead


