
A cryptographic view
on obfuscation

Dennis Hofheinz (CWI, Amsterdam)

Intuition behind obfuscation

int main() {
 printf(“Hi world”);
}

Hi world!

...
 strcpy(&x,&y,12);
 for(z=0;z<--x;z++){

...

Hi world!

Obfuscation

● Make code unintelligible
● But: preserve functionality

Applications of obfuscation

● Practical: protect know-how
● “In between example”: password check
● Theoretical:

– Turn secret key crypto into public key crypto
– (Fully) homomorphic encryption → MPC
– Implement ideal assumptions

● Random oracles, generic groups, ideal ciphers

– ...

Negative results

● [B+01]: All-purpose obfuscators do not exist
– Some program classes cannot be obfuscated
– Example artificial, composition of point functions
– Does not rule out specific obfuscators

● [GR07]: Relaxing the notion does not help
● [Hada00,Wee05]: obfuscation ↔ learnability

– f obfuscatable ⇔ f learnable from oracle access
● [B+01,GT05]: Unobfuscatability examples

Positive results

● [LPS04]: “Practical” obfuscations using ROs
– Control flow of programs obfuscated

● [C97,CMR98,Wee05,HMS07]: Point functions

– Point function: f
s
(x)=1 iff s=x

– Use case: password check: s=pwd, x=user input
● [HRSV07]: Obfuscation of re-encryption

– Decrypt and encrypt under different public key

Contradictory results?

● [Wee05]: Obfuscatable iff learnable
● [Wee05]: Obfuscation of point functions
● But: point functions not learnable from oracle!

● Major problem: No common definition
– Results depend on definition
– Exception: [B+01] (no all-purpose obfuscators)

This talk

● [HMS07] obfuscation definition
– “Remix” of previous definitions
– Useful, not too weak:

● Secret key crypto → public key crypto possible
● Password check possible

– At the same time meaningful, not too strong:
● Point functions easily obfuscatable → pwd check
● Secret key encryption in principle obfuscatable

● Note: this is not the only reasonable definition

Obfuscation definition(s)

● General idea:

A good obfuscation yields nothing but functionality

Obfuscation definition(s)

● ... just a little more formal:

O(f) is a good obfuscation of f
⇔

O(f) provides the functionality of f, but nothing else

Obfuscation definition(s)

● The problematic part:

● How to formalize “but nothing else”?

O(f) is a good obfuscation of f
⇔

O(f) provides the functionality of f, but nothing else

Obfuscation definition(s)

● Cryptographic version:

O(f) is a good obfuscation of f
⇔

1. O(f) provides the functionality of f
2. Everything that can be learned from O(f)...

... can also be learned from oracle access to f

Obfuscation definition(s)

● Cryptographic version, simulation-based:

O(f) is a good obfuscation of f
⇔

1. O(f) provides the functionality of f
2. There is a simulator S such that:

O(f) computationallyf indistinguishable from Sf

Sf denotes S's output when run with oracle access to f
understood: S has to be efficient

even with oracle access to f

Our definition

● More realistic: class of functions

● Why? f indexed, e.g., by secret pwd, key, ...
– Why uniform distribution? Use cases!

O(f) is a good obfuscation of class F={f}
⇔ on average (uniform f), it holds that

1. O(f) provides the functionality of f
2. There is a simulator S such that:

O(f) computationallyf indistinguishable from Sf

Our definition

● Complete definition, explicit formulation:

● Understood: complexity (O, S, D PPT)

O(f) is a good obfuscation of class F={f}
⇔ on average (uniform f), it holds that

1. O(f) provides the functionality of f
2. There is a simulator S such that for all D,

Pr[Df(O(f)) = 1] - Pr[Df(Sf) = 1]
is negligible

Application: password check

● Scenario: user tries to log into system
● Authentication through password query
● Goal 1: only correct password gives access
● First solution: store password on terminal
● Problem: what if a terminal gets corrupted?
● Goal 2: verification functionality, but not more

Application: password check

● Goal 1: only correct password gives access
● Goal 2: verification functionality, but not more

● Solution 2: obfuscate point function f
pwd

– Definition: f
pwd

(x)=1 iff pwd=x

– Access iff f
pwd

(user_input) evaluates to 1

– Goal 1 is 1st requirement on good obfuscation
– Goal 2 is 2nd requirement on good obfuscation

Point functions

● But: how to obfuscate point functions?

O(f) is a good obfuscation of class F={f
pwd

}

⇔
on average (uniform pwd), it holds that

1. O(f
pwd

) provides the functionality of f
pwd

2. There is a simulator S such that:
O(f

pwd
) computationallyf indistinguishable from Sfpwd

Point functions

● Solution: O(f
pwd

) = g(pwd) for one-way perm. g

– S outputs g(pwd') for uniform, independent pwd'

– Looks like O(f
pwd

)=g(pwd) since f-oracle useless

O(f) is a good obfuscation of class F={f
pwd

}

⇔
on average (uniform pwd), it holds that

1. O(f
pwd

) provides the functionality of f
pwd

2. There is a simulator S such that:
O(f

pwd
) computationallyf indistinguishable from Sfpwd

Other properties

● Secret key crypto → public key crypto:

● In principle, there are obfuscatable schemes
– But not very interesting: PKE interpreted as SKE

● Works only for passive adversaries (CPA)
● Result of [B+01] holds: no generic obfuscator

If you obfuscate the encryption algorithm
(with hardwired secret key) of a symmetric encryption scheme

... you get a secure public key encryption scheme

Conclusion

● Obfuscation from a cryptographic viewpoint
– No all-purpose obfuscator
– Lots of definitions, not many positive results
– But: no reason to be overly pessimistic!

● Not mentioned: composition of obfuscators
– Core of impossibilities: composition defects
– Essential for modular analysis
– Open: reasonable composable results (RO?)

