

Introduction to Secure Multiparty Computation techniques

Claudio Orlandi Università degli Studi di Firenze, Italy Aarhus Universitet, Denmark

> Introduction to Secure Multiparty Computation Techniques

Outline

- Obfuscation
- Cryptocomputing
- Secure 2-party Computation

 Yao's garbled circuit
- Secure n-party Computation

 Secret sharing-based arithmetic circuit
- Practical feasibility

Different Scenarios – Obfuscation

- P_1 wants to protect P_1 P_2 his function E(f)
- P₁ gives to P₂ the "encrypted" function
- P₂ computes the function on any input

Obfuscation – state of the art

- What kind of obfuscation?
 - the attacker cannot learn more than from black-box access to the function
- General impossibility result
 - Barak et al. 2001
- Few positive results

 Point functions, Re-encryption, …

Different Scenarios – Cryptocomputing

Homomorphic Encryption

 It's possible to compute on plaintexts just manipulating ciphertexts

$$\mathsf{E}_{\mathsf{pk}}(\mathsf{x}) - \mathsf{E}_{\mathsf{pk}}(\mathsf{y}) = \mathsf{E}_{\mathsf{pk}}(\mathsf{x} \otimes \mathsf{y})$$

Multiplicative Homomorphic Encryption

$$\mathsf{E}_{\mathsf{pk}}(\mathsf{x})\mathsf{E}_{\mathsf{pk}}(\mathsf{y}) = \mathsf{E}_{\mathsf{pk}}(\mathsf{x}\mathsf{y})$$

RSA

 $c_1 = x_1^e \mod n$ $c_2 = x_2^e \mod n$

$$C_1C_2 = (x_1^e)(x_2^e) = (x_1x_2)^e \mod n$$

Multiplicative Homomorphic Encryption

$$\mathsf{E}_{\mathsf{pk}}(\mathsf{x})\mathsf{E}_{\mathsf{pk}}(\mathsf{y}) = \mathsf{E}_{\mathsf{pk}}(\mathsf{x}\mathsf{y})$$

ElGamal

$$C_{1} = (g^{r_{1}}; x_{1}h^{r_{1}}) \quad C_{2} = (g^{r_{2}}; x_{2}h^{r_{2}})$$
$$C_{1}C_{2} = (g^{r_{1}+r_{2}}; x_{1}x_{2}h^{r_{1}+r_{2}})$$

Additive Homomorphic Encryption $E_{pk}(x)E_{pk}(y) = E_{pk}(x + y)$ $E_{pk}(x)^a = E_{pk}(ax)$

Modified ElGamal

$$c_1 = (g^{r_1}; g^{x_1} h^{r_1}) \quad c_2 = (g^{r_2}; g^{x_2} h^{r_2})$$

$$C_1 C_2 = (g^{r_1 + r_2}; g^{x_1 + x_2} h^{r_1 + r_2})$$

Inefficient decryption!

Additive Homomorphic Encryption $E_{pk}(x)E_{pk}(y) = E_{pk}(x + y)$ $E_{pk}(x)^a = E_{pk}(ax)$

Paillier

 $c_1 = g^{x_1} r_1^n \mod n^2$ $c_2 = g^{x_2} r_2^n \mod n^2$

$$C_1 C_2 = g^{x_1 + x_2} (r_1 r_2)^n \mod n^2$$

Cryptocomputing

- Fully Homomorphic Cryptosystem?
- State of the art
 - Non-interactive Cryptocomputing for NC¹
 Sander, Young 1999
 - the size of the ciphertext **doubles** after every operation
 - just for logarithmic-depth circuits

Interaction is needed?

• To compute any function in a secure way, you need to resort to Secure Multiparty Techniques

• Pros

- General feasibility
- Strong security guarantees

• Cons

- Computational overhead
- Communication overhead
- All parties need to cooperate online

Secure Multiparty Computation

Secure Multiparty Computation

Secure 2-party Computation

- Yao's solution (1982):
 - $-P_1$ "garbles" the circuit
 - P₂ evaluates the garbled circuit

Yao's garbled circuits (1)

Yao's garbled circuits (2)

• P₁ selects a random string for every values, for all wires

Yao's garbled circuits (3)

- P₁ encrypts the output using the inputs as a key
- P₁ permutes the table randomly

- P_1 sends to P_2 the garbled table
- P₁ sends the string corresponding to his input
 It appears just as a random string to P₂
- P₂ needs the string associated to his input

Yao's garbled circuits (5)

- P₂ needs the string associated to his input
- P₂ doesn't want to reveal his input to P₁
- P_1 doesn't want to reveal both strings to P_2 - Computing g(0,B) and g(1,B) P_2 will learn B
- Solution? Oblivious Transfer

1 out of 2 Oblivious Transfer Receiver Sender

- Sender doesn't know which secret is chosen
- Receiver doesn't learn the other secret

Introduction to Secure Multiparty Computation Techniques

Yao's garbled circuits – Final protocol

- P_1 inputs: (A,C) = (0,1)
- P₂ inputs: (B,D) = (1,1)

Yao's garbled circuits – Setup

- P₁ prepares the garbled circuit

 Assign a pair of secret strings
 to each wire
 - Encrypt the output of each gate with secret strings

• P₁ sends the garbled circuit to P₂

Yao's garbled circuits – Inputs exchange

 P₁ sends to P₂ the strings corresponding to his inputs,

Yao's garbled circuits – Inputs exchange

- P₁ sends to P₂ the strings corresponding to his inputs,
- P₁-P₂ run Oblivious Transfer
 P₂ obtains secret strings corresponding to his inputs

Yao's garbled circuits – Evaluating

 P₂ uses the secret strings to decrypt the output of the first layer

Yao's garbled circuits – Evaluating

- P₂ uses the secret strings to decrypt the output of the first layer
- P₂ uses these strings to decrypt the second layer

Yao's garbled circuits – Decoding

P₁ sends to P₂
 - <H(g0),0>

- <H(g1),1>

(H some hash function)

 P₂ evaluates f on the obtained string and learns the actual output

• P_2 communicates to P_1 the output

Yao's garbled circuits

- P₁ generates the garbled circuit
 - Assign random strings for each wire
 - Encrypt
 - Permute
- P₂ obtains random strings for his inputs with OT
 Oblivious Transfer
- P₂ evaluate the circuit
 - Decoding layer by layer
- P₂ recover the outputs and sends it to P₁
 Decoding table

Arithmetic circuits

- Ben-Or, Goldwasser and Wigderson, 1988
- Chaum, Crépeau and Damgård, 1988
- Idea
 - $-P_i$ has input x_i
 - $-P_i$ "shares" x_i between all parties $\rightarrow [x_i]$
 - All parties jointly evaluate the circuit $[y]=F([x_1],[x_2], \ldots, [x_n])$
 - They reconstruct $[y] \rightarrow y$

Secret sharing

- To share $x \in \{0, 1, ..., p-1\}$
 - Select a random t-degree polynomial g() such that f(0)=x
 - Sends f(i) to P_i
 - [x] = (f(1), f(2), ..., f(n))
- Lagrange interpolation polynomial
 - t points: allow you to reconstruct the polynomial
 - t-1 points: don't give you any information about the polynomial
 - (There are *p* polynomials that passes for t-1 points)

Computing on secret sharing

- Addition (offline)
 - Compute [x+y] from [x] and [y]
 - f() such that f(0) = x
 - -g() such that g(0) = y
 - -(f+g)() such that (f+g)(0) = x+y
- Every party just add his shares
 → [x+y]=[x]+[y]

Computing on secret sharing

- Multiplication (online)
 - Compute [xy] from [x] and [y]
 - f() such that f(0) = x
 - -g() such that g(0) = y
 - (fg)() such that (fg)(0) = xy
 - BUT: (fg) has degree 2t
- Interaction
 - is needed to compute h such that h(0)=xy and h has degree t

Arithmetic circuit

- From addition and multiplication you can compute any circuit
 - NOT: 1-a
 - AND: ab
 - -OR: a + b ab
 - XOR: 1-(a-b)²

Practical feasability of general SMC

- Fairplay
 - implements the Yao's technique
 - Malkhi et al. 2004
- SIMAP
 - implements secret sharing based SMC with applications to food market
 - national Danish Research Agency program

Fairplay

```
program Millionaires {
  type int = Int<4>; // 4-bit integer
  type AliceInput = int;
  type BobInput = int;
  type AliceOutput = Boolean;
  type BobOutput = Boolean;
  type Output = struct {
       AliceOutput alice, BobOutput bob};
  type Input = struct {
       AliceInput alice, BobInput bob};
  function Output out (Input inp) {
    out.alice = inp.alice > inp.bob;
    out.bob = inp.bob > inp.alice;
```


Fairplay

- Execution time:
 - Bit-wise AND between 8 bit register: 2.14s
 - Comparison between 32 bit integers: 4.03s
 - Median of two sorted 10-elements arrays of 16 bits integers: 40.55s

SIMAP

- Secret sharing *efficient* primitives (not just addition and multiplication)
 - Damgård et al. 2005 now
 - Comparison, equality, exponentiation, bitdecomposition etc.
- Language, compiler:
 - Nielsen and Schwartzbach 2007

SIMAP

```
C1: declare client Millionaires:
C2:
C3 :
     tunnel of sint netWorth;
C4:
C5:
      function void main(int[] args) {
C6:
      ask();
C7:
      }
C8:
C9:
      function void ask() {
C10:
     netWorth.put(readInt());
C11:
      }
C12:
C13:
      function void tell(bool b) {
C14:
     if (b) {
C15:
        display("You are the richest!");
       }
C16:
C17:
      else {
C18:
        display("Make more money!");
C19:
C20:
```


SIMAP

```
S1: declare server Max:
      group of Millionaires mills;
 S2:
 S3:
 S4:
      function void main(int[] args) {
 S5:
      sint max = 0;
 S6:
 S7:
       sclient rich;
 S8:
       for (client c in mills) {
 S9:
        (sint hetWorth = c.netWorth.get();
S10:
S11:
        if (netWorth > max) {
S12:
         max = netWorth;
S13:
         rich = c;
S14:
         }
S15:
S16:
S17:
       for (client c in mills) {
S18:
        c.tell(open(c==rich|rich));
S19:
S20:
```


Timing, comparison

SIMAP – application

- December 2007
 - for the first time SMC techniques will be used in a real-world application
- Secure auction
 - find the price at which to trade a certain item while keeping the individual bids private
- Danish sugarbeet market
 - producers will use the system to find a fair market price at which to trade contracts for production of beets.

Thank you! Questions?

Introduction to Secure Multiparty Computation Techniques