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Outline

• Obfuscation

• Cryptocomputing

• Secure 2-party Computation

– Yao’s garbled circuit

• Secure n-party Computation

– Secret sharing-based arithmetic circuit

• Practical feasibility 
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Different Scenarios – Obfuscation

• P1 wants to protect 
his function

• P1 gives to P2 the 
“encrypted” function

• P2 computes the 
function on any input

P1 P2

E(f)

y=E(f)(x)
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Obfuscation – state of the art

• What kind of obfuscation?
– the attacker cannot learn more than from 

black-box access to the function

• General impossibility result
– Barak et al. 2001

• Few positive results
– Point functions, Re-encryption, … 
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Different Scenarios – Cryptocomputing

• P2 gives to P1 the 
encrypted input 

• P1 computes any 
function of it

• P1 sends back the 
encrypted output

• P1 decrypts his output

P1 P2

E(x)

E(y)=f(E(x))

E(y)

y=D(E(y))
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Homomorphic Encryption

• It’s possible to compute on plaintexts just 
manipulating ciphertexts

Epk (x) - Epk (y) = Epk (x © y)
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Multiplicative Homomorphic Encryption

• RSA

c1 = xe
1 mod n c2 = xe

2 mod n

c1c2 = (xe
1)(xe

2) = (x1x2)e mod n

Epk (x)Epk (y) = Epk (xy)
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Multiplicative Homomorphic Encryption

• ElGamal

c1 = (gr 1 ; x1hr 1 ) c2 = (gr 2 ; x2hr 2 )

c1c2 = (gr 1 + r 2 ; x1x2hr 1 + r 2 )

Epk (x)Epk (y) = Epk (xy)
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Additive Homomorphic Encryption

• Modified ElGamal

c1 = (gr 1 ; gx 1 hr 1 ) c2 = (gr 2 ; gx 2 hr 2 )

c1c2 = (gr 1 + r 2 ; gx 1 + x 2 hr 1 + r 2 )

Inefficient decryption!

Epk (x)Epk (y) = Epk (x + y)

Epk (x)a = Epk (ax)
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Additive Homomorphic Encryption

• Paillier

c1 = gx 1 r n
1 mod n2 c2 = gx 2 r 2

n mod n2

c1c2 = gx 1 + x 2 (r 1r 2)n mod n2

Epk (x)a = Epk (ax)

Epk (x)Epk (y) = Epk (x + y)
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Cryptocomputing

• Fully Homomorphic Cryptosystem?

• State of the art

– Non-interactive Cryptocomputing for NC1

Sander, Young 1999

– the size of the ciphertext doubles after every 
operation

– just for logarithmic-depth circuits
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Interaction is needed?

• Pros

– General feasibility

– Strong security 
guarantees

• Cons

– Computational 
overhead

– Communication 
overhead

– All parties need to 
cooperate online

• To compute any function in a secure way, you 
need to resort to Secure Multiparty Techniques
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Secure Multiparty Computation

P1

i nput1

outputoutput

output

output

Trusted

Party

input4 i nput2

P2

i nput3

P3

P4

• Auction

• Voting

• …

• Parties agree on a 
function to be 
computed

• They want to protect 
their inputs
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Secure Multiparty Computation

P1

P2

P3

P4

output

output

output

output
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Secure 2-party Computation

• Yao’s solution (1982):

– P1 “garbles” the circuit

– P2 evaluates the garbled circuit

P1 P2

z=f(x,y)

z

yx
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Yao’s garbled circuits (1)

A B

C
111

001

010

000

CBA
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Yao’s garbled circuits (2)

A B

C
c1b1a1

c0b0a1

c0b1a0

c0b0a0

CBA

• P1 selects a random string for every values, for all wires
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Yao’s garbled circuits (3)

A B

C
Ea1,b1(c1)b1a1

Ea1,b0(c0)b0a1

Ea0,b1(c0)b1a0

Ea0,b0(c0)b0a0

CBA

• P1 encrypts the output using the inputs as a key

• P1 permutes the table randomly
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Yao’s garbled circuits (4)
A B

C

• P1 sends to P2 the garbled table

• P1 sends the string corresponding to his input

– It appears just as a random string to P2

• P2 needs the string associated to his input

Ea0,b1(c0)

Ea0,b0(c0)

Ea1,b1(c1)

Ea1,b0(c0)

C
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Yao’s garbled circuits (5)

• P2 needs the string associated to his input

• P2 doesn’t want to reveal his input to P1

• P1 doesn’t want to reveal both strings to P2

– Computing g(0,B) and g(1,B) P2 will learn B

• Solution? Oblivious Transfer
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1 out of 2 Oblivious Transfer
SenderReceiver

µ
2

1

¶

-OT

x0; x1b

xb

• Sender doesn’t know which secret is 
chosen 

• Receiver doesn’t learn the other secret
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A simple OT protocol

SenderReceiver

c0; c1

d = cx 0

0 cx 1

1

d
xb = D(d)

d = cx 0

0 cx 1

1 = E(1 ¡ b)x 0 E(b)x 1 = E((1 ¡ b)x0 + bx1)

= E(xb)

c0 = E(1 ¡ b)
c1 = E(b)

(1,0) o (0,1)
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Yao’s garbled circuits – Final protocol

A=0

B=1

E

C=1

D=1

F

G

• P1 inputs: (A,C) = (0,1)

• P2 inputs: (B,D) = (1,1)
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Yao’s garbled circuits – Setup

E F

G

• P1 prepares the garbled circuit

– Assign a pair of secret strings 

to each wire

– Encrypt the output of each 

gate with secret strings

• P1 sends the garbled circuit to P2

A

B

C

D
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Yao’s garbled circuits – Inputs exchange

E F

G

• P1 sends to P2 the strings 
corresponding to his inputs, 

a0

B

c1

D
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Yao’s garbled circuits – Inputs exchange

E F

H

• P1 sends to P2 the strings 
corresponding to his inputs, 

• P1-P2 run Oblivious Transfer

– P2 obtains secret strings 
corresponding to his inputs

a0

b1

c1

d1
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Yao’s garbled circuits – Evaluating

e0 f1

G

• P2 uses the secret strings 
to decrypt the output of the 
first layer

a0

b1

c1

d1
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Yao’s garbled circuits – Evaluating

e0 f1

g0

• P2 uses the secret strings 
to decrypt the output of the 
first layer

• P2 uses these strings to 
decrypt the second layer

a0

b1

c1

d1
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Yao’s garbled circuits – Decoding

e0 f1

g0

• P1 sends to P2

– <H(g0),0>

– <H(g1),1>

(H some hash function)

• P2 evaluates f on the obtained 
string and learns the actual output

• P2 communicates to P1 the output

a0

b1

c1

d1
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Yao’s garbled circuits
• P1 generates the garbled circuit

– Assign random strings for each wire

– Encrypt

– Permute

• P2 obtains random strings for his inputs with OT
– Oblivious Transfer

• P2 evaluate the circuit
– Decoding layer by layer

• P2 recover the outputs and sends it to P1

– Decoding table
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Arithmetic circuits
• Ben-Or, Goldwasser and Wigderson, 1988
• Chaum, Crépeau and Damgård, 1988

• Idea
– Pi has input xi

– Pi “shares” xi between all parties � [xi]

– All parties jointly evaluate the circuit
[y]=F([x1],[x2], … , [xn])

– They reconstruct [y] � y



Introduction to Secure Multiparty Computation Techniques 32

Secret sharing

• To share x ∈ {0, 1, …, p-1}
– Select a random t-degree polynomial g() such that

f(0)=x
– Sends f(i) to Pi

– [x] = (f(1),f(2), … , f(n))

• Lagrange interpolation polynomial
– t points: allow you to reconstruct the polynomial
– t-1 points: don’t give you any information about the 

polynomial 
– (There are p polynomials that passes for t-1 points)
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Computing on secret sharing

• Addition (offline)

– Compute [x+y] from [x] and [y]

– f() such that f(0) = x

– g() such that g(0) = y

– (f+g)() such that (f+g)(0) = x+y

• Every party just add his shares

� [x+y]=[x]+[y]
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Computing on secret sharing

• Multiplication (online)
– Compute [xy] from [x] and [y]

– f() such that f(0) = x 

– g() such that g(0) = y

– (fg)() such that (fg)(0) = xy

– BUT: (fg) has degree 2t

• Interaction 
– is needed to compute h such that h(0)=xy and h has 

degree t
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Arithmetic circuit

• From addition and multiplication you can 
compute any circuit

– NOT: 1-a

– AND: ab

– OR: a + b – ab

– XOR: 1-(a-b)2
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Practical feasability of general SMC

• Fairplay

– implements the Yao’s technique

– Malkhi et al. 2004

• SIMAP

– implements secret sharing based SMC with
applications to food market

– national Danish Research Agency program
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Fairplay
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Fairplay

• Execution time:

– Bit-wise AND between 8 bit register: 2.14s

– Comparison between 32 bit integers: 4.03s

– Median of two sorted 10-elements arrays of 
16 bits integers: 40.55s
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SIMAP

• Secret sharing efficient primitives (not just 
addition and multiplication)

– Damgård et al. 2005 – now

– Comparison, equality, exponentiation, bit-
decomposition etc.

• Language, compiler:

– Nielsen and Schwartzbach 2007
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SIMAP
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SIMAP



Introduction to Secure Multiparty Computation Techniques 42

Timing, comparison

SIMAP Fairplay



Introduction to Secure Multiparty Computation Techniques 43

SIMAP – application
• December 2007

– for the first time SMC techniques will be used in a 
real-world application

• Secure auction
– find the price at which to trade a certain item while 

keeping the individual bids private

• Danish sugarbeet market
– producers will use the system to find a fair market 

price at which to trade contracts for production of 
beets. 
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Thank you!
Questions?


