
Introduction to Secure Multiparty 
Computation Techniques

1

Introduction to Secure Multiparty 
Computation techniques

Claudio Orlandi

Università degli Studi di Firenze, Italy

Aarhus Universitet, Denmark



Introduction to Secure Multiparty Computation Techniques 2

Outline

• Obfuscation

• Cryptocomputing

• Secure 2-party Computation

– Yao’s garbled circuit

• Secure n-party Computation

– Secret sharing-based arithmetic circuit

• Practical feasibility 



Introduction to Secure Multiparty Computation Techniques 3

Different Scenarios – Obfuscation

• P1 wants to protect 
his function

• P1 gives to P2 the 
“encrypted” function

• P2 computes the 
function on any input

P1 P2

E(f)

y=E(f)(x)



Introduction to Secure Multiparty Computation Techniques 4

Obfuscation – state of the art

• What kind of obfuscation?
– the attacker cannot learn more than from 

black-box access to the function

• General impossibility result
– Barak et al. 2001

• Few positive results
– Point functions, Re-encryption, … 



Introduction to Secure Multiparty Computation Techniques 5

Different Scenarios – Cryptocomputing

• P2 gives to P1 the 
encrypted input 

• P1 computes any 
function of it

• P1 sends back the 
encrypted output

• P1 decrypts his output

P1 P2

E(x)

E(y)=f(E(x))

E(y)

y=D(E(y))



Introduction to Secure Multiparty Computation Techniques 6

Homomorphic Encryption

• It’s possible to compute on plaintexts just 
manipulating ciphertexts

Epk (x) - Epk (y) = Epk (x © y)



Introduction to Secure Multiparty Computation Techniques 7

Multiplicative Homomorphic Encryption

• RSA

c1 = xe
1 mod n c2 = xe

2 mod n

c1c2 = (xe
1)(xe

2) = (x1x2)e mod n

Epk (x)Epk (y) = Epk (xy)



Introduction to Secure Multiparty Computation Techniques 8

Multiplicative Homomorphic Encryption

• ElGamal

c1 = (gr 1 ; x1hr 1 ) c2 = (gr 2 ; x2hr 2 )

c1c2 = (gr 1 + r 2 ; x1x2hr 1 + r 2 )

Epk (x)Epk (y) = Epk (xy)



Introduction to Secure Multiparty Computation Techniques 9

Additive Homomorphic Encryption

• Modified ElGamal

c1 = (gr 1 ; gx 1 hr 1 ) c2 = (gr 2 ; gx 2 hr 2 )

c1c2 = (gr 1 + r 2 ; gx 1 + x 2 hr 1 + r 2 )

Inefficient decryption!

Epk (x)Epk (y) = Epk (x + y)

Epk (x)a = Epk (ax)



Introduction to Secure Multiparty Computation Techniques 10

Additive Homomorphic Encryption

• Paillier

c1 = gx 1 r n
1 mod n2 c2 = gx 2 r 2

n mod n2

c1c2 = gx 1 + x 2 (r 1r 2)n mod n2

Epk (x)a = Epk (ax)

Epk (x)Epk (y) = Epk (x + y)



Introduction to Secure Multiparty Computation Techniques 11

Cryptocomputing

• Fully Homomorphic Cryptosystem?

• State of the art

– Non-interactive Cryptocomputing for NC1

Sander, Young 1999

– the size of the ciphertext doubles after every 
operation

– just for logarithmic-depth circuits



Introduction to Secure Multiparty Computation Techniques 12

Interaction is needed?

• Pros

– General feasibility

– Strong security 
guarantees

• Cons

– Computational 
overhead

– Communication 
overhead

– All parties need to 
cooperate online

• To compute any function in a secure way, you 
need to resort to Secure Multiparty Techniques



Introduction to Secure Multiparty Computation Techniques 13

Secure Multiparty Computation

P1

i nput1

outputoutput

output

output

Trusted

Party

input4 i nput2

P2

i nput3

P3

P4

• Auction

• Voting

• …

• Parties agree on a 
function to be 
computed

• They want to protect 
their inputs



Introduction to Secure Multiparty Computation Techniques 14

Secure Multiparty Computation

P1

P2

P3

P4

output

output

output

output



Introduction to Secure Multiparty Computation Techniques 15

Secure 2-party Computation

• Yao’s solution (1982):

– P1 “garbles” the circuit

– P2 evaluates the garbled circuit

P1 P2

z=f(x,y)

z

yx



Introduction to Secure Multiparty Computation Techniques 16

Yao’s garbled circuits (1)

A B

C
111

001

010

000

CBA



Introduction to Secure Multiparty Computation Techniques 17

Yao’s garbled circuits (2)

A B

C
c1b1a1

c0b0a1

c0b1a0

c0b0a0

CBA

• P1 selects a random string for every values, for all wires



Introduction to Secure Multiparty Computation Techniques 18

Yao’s garbled circuits (3)

A B

C
Ea1,b1(c1)b1a1

Ea1,b0(c0)b0a1

Ea0,b1(c0)b1a0

Ea0,b0(c0)b0a0

CBA

• P1 encrypts the output using the inputs as a key

• P1 permutes the table randomly



Introduction to Secure Multiparty Computation Techniques 19

Yao’s garbled circuits (4)
A B

C

• P1 sends to P2 the garbled table

• P1 sends the string corresponding to his input

– It appears just as a random string to P2

• P2 needs the string associated to his input

Ea0,b1(c0)

Ea0,b0(c0)

Ea1,b1(c1)

Ea1,b0(c0)

C



Introduction to Secure Multiparty Computation Techniques 20

Yao’s garbled circuits (5)

• P2 needs the string associated to his input

• P2 doesn’t want to reveal his input to P1

• P1 doesn’t want to reveal both strings to P2

– Computing g(0,B) and g(1,B) P2 will learn B

• Solution? Oblivious Transfer



Introduction to Secure Multiparty Computation Techniques 21

1 out of 2 Oblivious Transfer
SenderReceiver

µ
2

1

¶

-OT

x0; x1b

xb

• Sender doesn’t know which secret is 
chosen 

• Receiver doesn’t learn the other secret



Introduction to Secure Multiparty Computation Techniques 22

A simple OT protocol

SenderReceiver

c0; c1

d = cx 0

0 cx 1

1

d
xb = D(d)

d = cx 0

0 cx 1

1 = E(1 ¡ b)x 0 E(b)x 1 = E((1 ¡ b)x0 + bx1)

= E(xb)

c0 = E(1 ¡ b)
c1 = E(b)

(1,0) o (0,1)



Introduction to Secure Multiparty Computation Techniques 23

Yao’s garbled circuits – Final protocol

A=0

B=1

E

C=1

D=1

F

G

• P1 inputs: (A,C) = (0,1)

• P2 inputs: (B,D) = (1,1)



Introduction to Secure Multiparty Computation Techniques 24

Yao’s garbled circuits – Setup

E F

G

• P1 prepares the garbled circuit

– Assign a pair of secret strings 

to each wire

– Encrypt the output of each 

gate with secret strings

• P1 sends the garbled circuit to P2

A

B

C

D



Introduction to Secure Multiparty Computation Techniques 25

Yao’s garbled circuits – Inputs exchange

E F

G

• P1 sends to P2 the strings 
corresponding to his inputs, 

a0

B

c1

D



Introduction to Secure Multiparty Computation Techniques 26

Yao’s garbled circuits – Inputs exchange

E F

H

• P1 sends to P2 the strings 
corresponding to his inputs, 

• P1-P2 run Oblivious Transfer

– P2 obtains secret strings 
corresponding to his inputs

a0

b1

c1

d1



Introduction to Secure Multiparty Computation Techniques 27

Yao’s garbled circuits – Evaluating

e0 f1

G

• P2 uses the secret strings 
to decrypt the output of the 
first layer

a0

b1

c1

d1



Introduction to Secure Multiparty Computation Techniques 28

Yao’s garbled circuits – Evaluating

e0 f1

g0

• P2 uses the secret strings 
to decrypt the output of the 
first layer

• P2 uses these strings to 
decrypt the second layer

a0

b1

c1

d1



Introduction to Secure Multiparty Computation Techniques 29

Yao’s garbled circuits – Decoding

e0 f1

g0

• P1 sends to P2

– <H(g0),0>

– <H(g1),1>

(H some hash function)

• P2 evaluates f on the obtained 
string and learns the actual output

• P2 communicates to P1 the output

a0

b1

c1

d1



Introduction to Secure Multiparty Computation Techniques 30

Yao’s garbled circuits
• P1 generates the garbled circuit

– Assign random strings for each wire

– Encrypt

– Permute

• P2 obtains random strings for his inputs with OT
– Oblivious Transfer

• P2 evaluate the circuit
– Decoding layer by layer

• P2 recover the outputs and sends it to P1

– Decoding table



Introduction to Secure Multiparty Computation Techniques 31

Arithmetic circuits
• Ben-Or, Goldwasser and Wigderson, 1988
• Chaum, Crépeau and Damgård, 1988

• Idea
– Pi has input xi

– Pi “shares” xi between all parties � [xi]

– All parties jointly evaluate the circuit
[y]=F([x1],[x2], … , [xn])

– They reconstruct [y] � y



Introduction to Secure Multiparty Computation Techniques 32

Secret sharing

• To share x ∈ {0, 1, …, p-1}
– Select a random t-degree polynomial g() such that

f(0)=x
– Sends f(i) to Pi

– [x] = (f(1),f(2), … , f(n))

• Lagrange interpolation polynomial
– t points: allow you to reconstruct the polynomial
– t-1 points: don’t give you any information about the 

polynomial 
– (There are p polynomials that passes for t-1 points)



Introduction to Secure Multiparty Computation Techniques 33

Computing on secret sharing

• Addition (offline)

– Compute [x+y] from [x] and [y]

– f() such that f(0) = x

– g() such that g(0) = y

– (f+g)() such that (f+g)(0) = x+y

• Every party just add his shares

� [x+y]=[x]+[y]



Introduction to Secure Multiparty Computation Techniques 34

Computing on secret sharing

• Multiplication (online)
– Compute [xy] from [x] and [y]

– f() such that f(0) = x 

– g() such that g(0) = y

– (fg)() such that (fg)(0) = xy

– BUT: (fg) has degree 2t

• Interaction 
– is needed to compute h such that h(0)=xy and h has 

degree t



Introduction to Secure Multiparty Computation Techniques 35

Arithmetic circuit

• From addition and multiplication you can 
compute any circuit

– NOT: 1-a

– AND: ab

– OR: a + b – ab

– XOR: 1-(a-b)2



Introduction to Secure Multiparty Computation Techniques 36

Practical feasability of general SMC

• Fairplay

– implements the Yao’s technique

– Malkhi et al. 2004

• SIMAP

– implements secret sharing based SMC with
applications to food market

– national Danish Research Agency program



Introduction to Secure Multiparty Computation Techniques 37

Fairplay



Introduction to Secure Multiparty Computation Techniques 38

Fairplay

• Execution time:

– Bit-wise AND between 8 bit register: 2.14s

– Comparison between 32 bit integers: 4.03s

– Median of two sorted 10-elements arrays of 
16 bits integers: 40.55s



Introduction to Secure Multiparty Computation Techniques 39

SIMAP

• Secret sharing efficient primitives (not just 
addition and multiplication)

– Damgård et al. 2005 – now

– Comparison, equality, exponentiation, bit-
decomposition etc.

• Language, compiler:

– Nielsen and Schwartzbach 2007



Introduction to Secure Multiparty Computation Techniques 40

SIMAP



Introduction to Secure Multiparty Computation Techniques 41

SIMAP



Introduction to Secure Multiparty Computation Techniques 42

Timing, comparison

SIMAP Fairplay



Introduction to Secure Multiparty Computation Techniques 43

SIMAP – application
• December 2007

– for the first time SMC techniques will be used in a 
real-world application

• Secure auction
– find the price at which to trade a certain item while 

keeping the individual bids private

• Danish sugarbeet market
– producers will use the system to find a fair market 

price at which to trade contracts for production of 
beets. 



Introduction to Secure Multiparty Computation Techniques 44

Thank you!
Questions?


