Introduction to Secure Multiparty
Computation techniques

Claudio Orlandi
Universita degli Studi di Firenze, Italy
Aarhus Universitet, Denmark

Introduction to Secure Multiparty 1
Computation Techniques

B
Outline

» Obfuscation

» Cryptocomputing

« Secure 2-party Computation
— Yao’s garbled circuit

» Secure n-party Computation
— Secret sharing-based arithmetic circuit

* Practical feasibility

Different Scenarios — Obfuscation

P, wants to protect P P,
his function EfH

=E(f)(x
* P, gives to P, the y==0%

“encrypted” function

* P, computes the
function on any input

Obfuscation — state of the art

 What kind of obfuscation?

— the attacker cannot learn more than from
black-box access to the function

« General impossibility result
— Barak et al. 2001

* Few positive results
— Point functions, Re-encryption, ...

Different Scenarios — Cryptocomputing

encrypted output

J

y=D(E(y))

« P, gives to P, the P, P,
encrypted input

R - E(x)

« P, computes any E(y)=f(E(x))

function of it C i i

. P, sends back the E(y)

- P, decrypts his output

Homomorphic Encryption

* |t's possible to compute on plaintexts just
manipulating ciphertexts

Epk(X) - Epk(y) = Epk(x ©y)

e IEHD
), 2, 2
Signal Processing in the Enci d Domain

Multiplicative Homomorphic Encryption

Epk (X)Epk (Y) = Epk(Xy)

« RSA

Ct =Xy modn C= X5 modn

CiC2 = (X7)(x3) = (X1Xx2)® mod n

Multiplicative Homomorphic Encryption

Epk (X)Epk (Y) = Epk(Xy)

» ElGamal

ci = (9';x1h"") © = (g'2;x2h"2)

k ,:I ,"
Signal Processing in the Enci d Domain

Additive Homomorphic Encryption
Epk (X)Epk(y) = Epk(X +Y)
Eok(X)? = Epk(ax)

 Modified ElGamal

¢ =(g"9"h"") c=(g?;g"h")

C1C2 — (gr1+r2;gx1+xzhr1+r2)

Inefficient decryption!
Introduction to Secure Mulparty Computation Techniques 9

i D
_ Signal Processing in the Enc d Domain

Additive Homomorphic Encryption
E ok (X)Epk(y) = Epk (X +y)
Eok(X)? = Epk(ax)

e Palllier

ci=g“'r! modn® ¢ = g*er," mod n?

CiC = g1 X2(rqro)" mod n?

.
Cryptocomputing

* Fully Homomorphic Cryptosystem?

e State of the art

— Non-interactive Cryptocomputing for NC'
Sander, Young 1999

— the size of the ciphertext doubles after every
operation

— just for logarithmic-depth circuits

Interaction iIs needed?

« To compute any function in a secure way, you
need to resort to Secure Multiparty Techniques

* Pros «Cons
— General feasibility — Computational
— Strong security overhead
guarantees — Communication
overhead

— All parties need to
cooperate online

Secure Multiparty Computation

« Parties agree on a
function to be
computed

NPty output They want to protect
inputy inputs their inputs
P Trusted
4 output Party output

@ » Voting

i D
_ Signal Processing in the Enc d Domain

Secure Multiparty Computation

F)1 output

ﬂx
output

Secure 2-party Computation

| Z=f(X,y)

~* Yao’s solution (1982):
— P, “garbles” the circuit

- | — P, evaluates the garbled circuit

.
Yao's garbled circuits (1)

A B

A
0
0
1
1

— O | = | O O
Al o|lo|lo|l O

A B
A|B|C
d | by | Co
ay | by | ¢
a; | by | Cq
a; | by | c .

+ P, selects a random string for every values, for all wires

A B
A| B C
a, | by E.0,60(Co)
a, | by E20.01(Co)
a; | by E41,00(Co)
a; | by Ea161(C1) C

» P, encrypts the output using the inputs as a key
» P, permutes the table randomly

Yao's garbled circuits (4)

C A B

- P, sends to P, the garbled table

» P, sends the string corresponding to his input
— It appears just as a random string to P,

* P, needs the string associated to his input

Yao's garbled circuits (5)

* P, needs the string associated to his input

» P, doesn’t want to reveal his input to P,

» P, doesn’t want to reveal both strings to P,
— Computing g(0,B) and g(1,B) P, will learn B

« Solution? Oblivious Transfer

Signal Processing in the Enci d Domain

1 out of 2 Oblivious Transfer

Recelver Sender
Xpo, X
b [u 21'[: 0, AT
-OT
Xb 1

 Sender doesn’t know which secret is
chosen

 Receiver doesn’t learn the other secret

E
A simple OT protocol

Receiver Sender
co=E(1j b Co; G
ci = E(b)
(1,0) o (0,1)
d
Xp=D(d) - d= c°cy’

Yao's garbled circuits — Final protocol

B=1 D=1

« P, inputs: (A,C) = (0,1) A=0 | C=1
» P, inputs: (B,D) = (1,1)

Yao’s garbled circuits — Setup

» P. prepares the garbled circuit el
— Assign a pair of secret strings | |
to each wire
— Encrypt the output of each EH) H)F
gate with secret strings
v,

* P, sends the garbled circuit to P,

Yao's garbled circuits — Inputs exchange

B D
» P, sends to P, the strings a0 | cf

corresponding to his inputs,

Yao's garbled circuits — Inputs exchange

b1 d1
» P, sends to P, the strings a0 | cf

corresponding to his inputs,

* P,-P, run Oblivious Transfer

— P, obtains secret strings
corresponding to his inputs ,

E D

Yao's garbled circuits — Evaluating

b1 di
» P, uses the secret strings a0 | cf
to decrypt the output of the
first layer & &
el f1

G

Yao's garbled circuits — Evaluating

b di
» P, uses the secret strings a0 | o
to decrypt the output of the
first layer
el f1

» P, uses these strings to

decrypt the second layer .

Yao’s garbled circuits — Decoding

b1 di
* P, sendsto P, a0 | cf

— <H(g0),0>

— <H(g1),1>

(H some hash function)

el f1

« P, evaluates f on the obtained

string and learns the actual output i

« P, communicates to P, the output

Yao’s garbled circuits

P, generates the garbled circuit
— Assign random strings for each wire
— Encrypt

— Permute

P, obtains random strings for his inputs with OT
— Oblivious Transfer

P, evaluate the circuit
— Decoding layer by layer

P, recover the outputs and sends it to P,
— Decoding table

Arithmetic circuits

Ben-Or, Goldwasser and Wigderson, 1988
Chaum, Crépeau and Damgard, 1988

* |dea
— P, has input x;

— P, “shares” x; between all parties = [x]

— All parties jointly evaluate the circuit
lyl=F (X LIXal, - [XA])

— They reconstruct [y] = vy

Secret sharing

« Tosharexe {0, 1, ..., p-T}
— Select a random t-degree polynomial g() such that
f(0)=x
— Sends f(i) to P,
— [x] = (1(1),1(2), ... , 1(n))

« Lagrange interpolation polynomial
— t points: allow you to reconstruct the polynomial

— t-1 points: don'’t give you any information about the
polynomial

— (There are p polynomials that passes for t-1 points)

A I D
_ Signal Processing in the Enc d Domain

Computing on secret sharing

 Addition (offline)
— Compute [x+y] from [x] and [y]
—1() such that f(0) = x
—g() such that g(0) =y
— (f+g)() such that (f+9)(0) = x+y

* Every party just add his shares
2 [x+yl=[x]+ly]

Computing on secret sharing

» Multiplication (online)
— Compute [xy] from [x] and [y]
— f() such that f(0) = x
— g() such that g(0) =y
— (fg)() such that (fg)(0) = xy
— BUT: (fg) has degree 2t

* |nteraction

— IS needed to compute h such that h(0)=xy and h has
degree t

Arithmetic circuit

* From addition and multiplication you can
compute any circuit
—NOT: 1-a
—AND: ab
—OR: a+b-ab
— XOR: 1-(a-b)?

Practical feasability of general SMC

 Fairplay
— Implements the Yao's technique
— Malkhi et al. 2004

« SIMAP

— implements secret sharing based SMC with
applications to food market

— national Danish Research Agency program

S
Fairplay

program Millionaires ({
type int = Int<4>; // 4-bit integer
type AliceInput = int;
type BobInput = int;
type AliceOutput = Boolean;
type BobOutput = Boolean;
type Output = struct (
AliceOutput alice, BobOutput bob};
type Input = struct ({
AliceInput alice, BobInput bob};

function Output out (Input inp) {
out.alice = inp.alice > inp.bob;
out.bob = inp.bob = irp.alice;

E
Fairplay

» Execution time:
— Bit-wise AND between 8 bit register: 2.14s
— Comparison between 32 bit integers: 4.03s

— Median of two sorted 10-elements arrays of
16 bits integers: 40.55s

.
SIMAP

» Secret sharing efficient primitives (not just
addition and multiplication)

— Damgard et al. 2005 — now

— Comparison, equality, exponentiation, bit-
decomposition efc.

» Language, compiler:
— Nielsen and Schwartzbach 2007

SIMAP

Cl: declare client Millionaires:

CZ2:

C3: tunnel of sint netWorth;

C4:

C5: function void main(int[] args) {

Cé6: aski();

€7: }

C8:

C9: function void ask() {
C1l0: netWorth.put (readInt()) ;
cii: |}

E12s

C13: function void tell (bool b) {
Cl4: 1f (b) {

C15: display("You are the richest!");
Clé: }

&4 B i else {

Cl8: display("Make more money!");
Cl19: }

c20: }

SIMAP

S1l: declare server Max:
S2: group of Milliconaires mills;
S3:
S4: function void main(int[] args) {
S5
o6 ma}: = 0;
S7: sclient rich;
=8¢
S9: fg client ¢ in mills) {
S10: ethrth = c.netWorth.get () ;
S11: iT (netWorth > max) f{
312: max = netWorth;
S13: rich = c¢;
S14: }
S15: }
S16:
S17: for (client ¢ in mills) {
S18: c.tell (open({c==rich|rich)) ;
S19: }
820: |}

Timing, comparison

SIMAP Fairplay
(3,1) (5.2) | Malkhi et al. (25)
PIR | 113 327 3.65
+ 0.126 0.197 | 2.14
< 3.8 89 | 4.03

S
SIMAP — application

« December 2007

— for the first time SMC techniques will be used in a
real-world application

 Secure auction

— find the price at which to trade a certain item while
keeping the individual bids private

» Danish sugarbeet market

— producers will use the system to find a fair market
price at which to trade contracts for production of
beets.

Thank you!
Questions?

