Dries Schellekens Brecht Wyseur Bart Preneel

Katholieke Universiteit Leuven Department ESAT/SCD-COSIC

First International Workshop on Run Time Enforcement for Mobile and Distributed Systems September 27, 2007, Dresden

Outline

1 Remote attestation

- Motivation
- Trusted computing platforms
- Legacy platforms

2 Legacy OS with TPM

- TPM time stamping
- Improved Pioneer Protocol

(日)、

э

Trusted bootloader

- Remote attestation
 - L Motivation

Outline

Motivation

Trusted computing platforms

Legacy platforms

2 Legacy OS with TPM

- TPM time stamping
- Improved Pioneer Protocol
- Trusted bootloader

Remote attestation

L Motivation

Motivation

Communication security

- Transmitted data: confidentiality, integrity, freshness
- Involved endpoints: authenticity
- Remote attestation: integrity reporting
- Tamper resistant software: self checking code

Applications

- Peer to peer networks
- Grid computing
- Multiplayer games (e.g., World of Warcraft)
- Digital rights management

-

・ロット (雪) () () () ()

- Remote attestation
 - Trusted computing platforms

Outline

1 Remote attestation

Motivation

Trusted computing platforms

Legacy platforms

2 Legacy OS with TPM

- TPM time stamping
- Improved Pioneer Protocol
- Trusted bootloader

- Remote attestation
 - Trusted computing platforms

TCG overview

Three core components

- 1 Trusted Platform Module: "smartcard" bound to platform
- 2 Core Root of Trust for Measurement: BIOS
- 3 TCG Software Stack: software support

TPM features

- Cryptographic functions: RNG, SHA-1, HMAC, RSA
- Non-volatile memory: key storage
- Platform Configuration Registers (PCR)
 - Record configuration measurements (hash values)
 - **TPM_Extend()**: $PCR_{new} \leftarrow SHA-1(PCR_{old}||M)$

・ロット (雪) () () () ()

- Remote attestation
 - Trusted computing platforms

Integrity measurement

- Chain of trust
 - **1** Measure next component in boot process
 - 2 TPM_Extend() measurement to PCR
 - 3 Log measurement in Stored Measurement Log

Remote attestation

Trusted computing platforms

Integrity reporting

- Endorsement Key (EK)
 - Unique TPM identifier
 - Certificate produced by manufacturer
- Attestation Identity Key (AIK): pseudonym for EK
 - Certified by Privacy CA
 - Direct Anonymous Attestation (TPM v1.2)
- Challenge response protocol
 - **1** Verifier \rightarrow TPA: *n*
 - **2** Verifier \leftarrow TPA: $Sign_{AIK}(\overrightarrow{PCR}, n)$, $cert_{AIK}$, SML
- Trusted Platform Agent
 - Operating system service
 - TPM_Quote() on selected PCR registers
 - Collect AIK certificate and PCR history from SML

- Remote attestation
 - Trusted computing platforms

Application level attestation

Shortcomings of TCG attestation

- Time difference between measurement and reporting
- Hash value of binaries
 - New version = new hash
 - Many configurations
- Hybrid attestation schemes: e.g., property based attestation

Operating system requirement

- Legacy OS: monolithic, complex, huge TCB
- Trend within TC initializes
 - Microkernel (e.g., L4) or hypervisor (e.g., Xen)
 - Virtualization for backward compatibility

- Remote attestation
 - Legacy platforms

Outline

1 Remote attestation

- Motivation
- Trusted computing platforms
- Legacy platforms

2 Legacy OS with TPM

- TPM time stamping
- Improved Pioneer Protocol
- Trusted bootloader

Remote attestation

Legacy platforms

Checksum functions

Memory copy attack

Three memory operations

- **1** Fetch: retrieve instruction from memory for execution
- 2 Read: load value from memory
- 3 Write: store value in memory
- Redirect fetch to tampered copy, but read from genuine copy
- Minimal overhead if hardware assisted (e.g., split TLB)

Detection of memory copy attack

- Self modifying code: overwrite code and test execution
- Execution time measurement: detect overhead of attack

- Remote attestation
 - Legacy platforms

Pioneer

- at t_1 : verifier sends challenge n to verification agent A
- at t_2 : verifier gets response $c \leftarrow cksum(n, A)$

$$t_2 - t_1 < \Delta t_{expected} = \Delta t_{cksum} + \Delta t_{network} + \delta t$$

Remote attestation

Legacy platforms

Drawbacks of Pioneer

- Fixed hardware configuration (CPU and RAM)
- Fixed verifier address to avoid proxy attack
- Indeterministic network latency $(\Delta t_{network})$

Requirements for checksum function

- Unpredictable for adversary
 - Pseudo-random memory traversal
 - Seeded by challenge n
- Deterministic execution time: Δt_{cksum} known to verifier
 - Supervisor mode
 - Maskable interrupts disabled
- Time optimal implementation

э

(日)、

- Legacy OS with TPM
 - └─TPM time stamping

Outline

1 Remote attestation

- Motivation
- Trusted computing platforms
- Legacy platforms

2 Legacy OS with TPM

- TPM time stamping
- Improved Pioneer Protocol

(日)、

э

Trusted bootloader

Legacy OS with TPM

└─TPM time stamping

TPM time stamping

- TPM_TickStampBlob() and TPM_GetTicks() (TPM v1.2)
- $TS \leftarrow Sign_{SK}(blob||t||TSN)$
- Resolution: max 1 μ s, min 1 ms
- On startup
 - Tick counter t reset to 0
 - Tick Session Nonce (TSN) initialized with random value

Experiments

- Infineon SLB 9635 TT 1.2
 - Resolution = 1 ms
- Atmel AT97SC3203
 - Behaves as monotonic counter (TCG compliant?)

- Legacy OS with TPM
 - Improved Pioneer Protocol

Outline

1 Remote attestation

- Motivation
- Trusted computing platforms
- Legacy platforms

Legacy OS with TPM
 TPM time stamping
 Improved Pioneer Protocol
 Trusted bootloader

Legacy OS with TPM

Improved Pioneer Protocol

Improving Pioneer with TPM time stamping

Verifier V checks integrity of verification agent A

1
$$V \rightarrow A$$
: n
2 $V \leftarrow A$: $TS_1 \leftarrow Sign_{TPM}(n||t_1||TSN_1)$
3 A : $c \leftarrow cksum(TS_1, V)$
4 $V \leftarrow A$: $TS_2 \leftarrow Sign_{TPM}(c||t_2||TSN_2)$
5 V :

- verify TS_1 and TS_2
- check $TSN_1 = TSN_2$
- check $t_2 t_1 < \Delta t_{expected}$
- verify c

Verification agent reports integrity of application E

7
$$A: h \leftarrow hash(TS_2, E)$$

8 $V \leftarrow A: h$

9 V: verify h

э

・ロット (雪) () () () ()

Legacy OS with TPM

Improved Pioneer Protocol

Local time measurement

•
$$t_2 - t_1 < \Delta t_{expected} = \Delta t_{cksum} + \Delta t_{Sign} + \delta t$$

• Atmel TPM: $\Delta t_{Sign} = 100$ ms (1024) and 500 ms (2048)

(日) (四) (王) (日) (日) (日)

Legacy OS with TPM

Improved Pioneer Protocol

Advantages

Local time measurement

- No non-deterministic network latency
- Resolution is limited $\Rightarrow \Delta t_{cksum} \nearrow$
- Unique platform identification
 - Link hardware configuration to TPM signing key
 - Prevents proxy attack
- Basic TPM support
 - Only device driver
 - No adapted bootloader
 - No adapted operating system
- Immune to TPM reset attack
 - $\blacksquare TSN_1 \neq TSN_2$

э

A D F A B F A B F A B F

- Legacy OS with TPM
 - Trusted bootloader

Outline

1 Remote attestation

- Motivation
- Trusted computing platforms
- Legacy platforms

2 Legacy OS with TPM

TPM time stampingImproved Pioneer Protocol

(日)、

э

Trusted bootloader

- Legacy OS with TPM
 - └─ Trusted bootloader

Configuration identification

Hardware upgrade

- Adversary can speed up cksum()
- Replace CPU or RAM
- TCG chain of trust until bootloader
 - 1 Bootloader records CPUID in TPM
 - **2** Bootloader benchmarks cksum() and stores $\Delta t_{expected}$ in TPM
- TCG attestation to report hardware configuration
- Hardware upgrade detected

- Trusted computing support limited
- Secure operating system required to offer application level attestation
- Pure software based attestation for legacy platform has shortcomings
- Bridge the gap by using TPM time stamping and trusted bootloader

