Remote attestation on legacy operating systems with trusted platform modules

Dries Schellekens Brecht Wyseur Bart Preneel

Katholieke Universiteit Leuven
Department ESAT/SCD-COSIC

First International Workshop on Run Time Enforcement for Mobile and Distributed Systems
September 27, 2007, Dresden
Remote attestation on legacy operating systems with trusted platform modules

Outline

1. Remote attestation
 - Motivation
 - Trusted computing platforms
 - Legacy platforms

2. Legacy OS with TPM
 - TPM time stamping
 - Improved Pioneer Protocol
 - Trusted bootloader

3. Conclusions
Remote attestation on legacy operating systems with trusted platform modules

Outline

1. Remote attestation
 - Motivation
 - Trusted computing platforms
 - Legacy platforms

2. Legacy OS with TPM
 - TPM time stamping
 - Improved Pioneer Protocol
 - Trusted bootloader

3. Conclusions
Motivation

- Communication security
 - Transmitted data: confidentiality, integrity, freshness
 - Involved endpoints: authenticity
- Remote attestation: integrity reporting
- Tamper resistant software: self checking code

Applications

- Peer to peer networks
- Grid computing
- Multiplayer games (e.g., World of Warcraft)
- Digital rights management
Remote attestation on legacy operating systems with trusted platform modules

Outline

1. Remote attestation
 - Motivation
 - Trusted computing platforms
 - Legacy platforms

2. Legacy OS with TPM
 - TPM time stamping
 - Improved Pioneer Protocol
 - Trusted bootloader

3. Conclusions
Remote attestation on legacy operating systems with trusted platform modules

Trusted computing platforms

TCG overview

- Three core components
 1. Trusted Platform Module: “smartcard” bound to platform
 2. Core Root of Trust for Measurement: BIOS
 3. TCG Software Stack: software support

TPM features

- Cryptographic functions: RNG, SHA-1, HMAC, RSA
- Non-volatile memory: key storage
- Platform Configuration Registers (PCR)
 - Record configuration measurements (hash values)
 - $TPM_{\text{Extend}}()$: $PCR_{\text{new}} \leftarrow \text{SHA-1}(PCR_{\text{old}} || M)$
Remote attestation on legacy operating systems with trusted platform modules

- Remote attestation
- Trusted computing platforms

Integrity measurement

- Chain of trust
 1. Measure next component in boot process
 2. TPM_Extend() measurement to PCR
 3. Log measurement in Stored Measurement Log

![Diagram](attachment://diagram.png)
Remote attestation on legacy operating systems with trusted platform modules

Remote attestation

Trusted computing platforms

Integrity reporting

- Endorsement Key (EK)
 - Unique TPM identifier
 - Certificate produced by manufacturer

- Attestation Identity Key (AIK): pseudonym for EK
 - Certified by Privacy CA
 - Direct Anonymous Attestation (TPM v1.2)

- Challenge response protocol
 1. Verifier → TPA: n
 2. Verifier ← TPA: $\text{Sign}_{\text{AIK}}(\overrightarrow{\text{PCR}}, n), \text{cert}_{\text{AIK}}, SML$

- Trusted Platform Agent
 - Operating system service
 - $\text{TPM}_\text{Quote}()$ on selected PCR registers
 - Collect AIK certificate and PCR history from SML
Remote attestation on legacy operating systems with trusted platform modules

Remote attestation

Trusted computing platforms

Application level attestation

- Shortcomings of TCG attestation
 - Time difference between measurement and reporting
 - Hash value of binaries
 - New version = new hash
 - Many configurations
- Hybrid attestation schemes: e.g., property based attestation

Operating system requirement

- Legacy OS: monolithic, complex, huge TCB
- Trend within TC initializes
 - Microkernel (e.g., L4) or hypervisor (e.g., Xen)
 - Virtualization for backward compatibility
Outline

1. Remote attestation
 - Motivation
 - Trusted computing platforms
 - Legacy platforms

2. Legacy OS with TPM
 - TPM time stamping
 - Improved Pioneer Protocol
 - Trusted bootloader

3. Conclusions
Remote attestation on legacy operating systems with trusted platform modules

Checksum functions

- Memory copy attack
 - Three memory operations:
 1. Fetch: retrieve instruction from memory for execution
 2. Read: load value from memory
 3. Write: store value in memory
 - Redirect fetch to tampered copy, but read from genuine copy
 - Minimal overhead if hardware assisted (e.g., split TLB)

- Detection of memory copy attack
 - Self modifying code: overwrite code and test execution
 - Execution time measurement: detect overhead of attack
Pioneer

- at t_1: verifier sends challenge n to verification agent A
- at t_2: verifier gets response $c \leftarrow \text{cksum}(n, A)$
- $t_2 - t_1 < \Delta t_{\text{expected}} = \Delta t_{\text{cksum}} + \Delta t_{\text{network}} + \delta t$
Remote attestation on legacy operating systems with trusted platform modules

Remote attestation

Legacy platforms

Drawbacks of Pioneer

- Fixed hardware configuration (CPU and RAM)
- Fixed verifier address to avoid proxy attack
- Indeterministic network latency ($\Delta t_{network}$)

Requirements for checksum function

- Unpredictable for adversary
 - Pseudo-random memory traversal
 - Seeded by challenge n
- Deterministic execution time: $\Delta t_{checksum}$ known to verifier
 - Supervisor mode
 - Maskable interrupts disabled
- Time optimal implementation
Remote attestation on legacy operating systems with trusted platform modules

Legacy OS with TPM
- TPM time stamping

Outline

1. Remote attestation
 - Motivation
 - Trusted computing platforms
 - Legacy platforms

2. Legacy OS with TPM
 - TPM time stamping
 - Improved Pioneer Protocol
 - Trusted bootloader

3. Conclusions
Remote attestation on legacy operating systems with trusted platform modules

- Legacy OS with TPM
- TPM time stamping

TPM time stamping

- `TPM_TickStampBlob()` and `TPM_GetTicks()` (TPM v1.2)
- \(\text{TS} \leftarrow \text{Sign}_{SK}(\text{blob}||t||\text{TSN}) \)
- Resolution: max 1 \(\mu s \), min 1 ms
- On startup
 - Tick counter \(t \) reset to 0
 - Tick Session Nonce (TSN) initialized with random value

Experiments

- Infineon SLB 9635 TT 1.2
 - Resolution = 1 ms
- Atmel AT97SC3203
 - Behaves as monotonic counter (TCG compliant?)
Remote attestation on legacy operating systems with trusted platform modules

Legacy OS with TPM

Improved Pioneer Protocol

Outline

1. Remote attestation
 - Motivation
 - Trusted computing platforms
 - Legacy platforms

2. Legacy OS with TPM
 - TPM time stamping
 - Improved Pioneer Protocol
 - Trusted bootloader

3. Conclusions
Improving Pioneer with TPM time stamping

- Verifier V checks integrity of verification agent A

 1. $V \rightarrow A : n$
 2. $V \leftarrow A : TS_1 \leftarrow \text{Sign}_{TPM}(n||t_1||TSN_1)$
 3. $A : c \leftarrow \text{cksum}(TS_1, V)$
 4. $V \leftarrow A : TS_2 \leftarrow \text{Sign}_{TPM}(c||t_2||TSN_2)$
 5. V:
 - verify TS_1 and TS_2
 - check $TSN_1 = TSN_2$
 - check $t_2 - t_1 < \Delta t_{expected}$
 - verify c

- Verification agent reports integrity of application E

 7. $A : h \leftarrow \text{hash}(TS_2, E)$
 8. $V \leftarrow A : h$
 9. V: verify h
Remote attestation on legacy operating systems with trusted platform modules

- Legacy OS with TPM
- Improved Pioneer Protocol

Local time measurement

- $t_2 - t_1 < \Delta t_{\text{expected}} = \Delta t_{\text{cksum}} + \Delta t_{\text{Sign}} + \delta t$
- Atmel TPM: $\Delta t_{\text{Sign}} = 100$ ms (1024) and 500 ms (2048)
Remote attestation on legacy operating systems with trusted platform modules

Legacy OS with TPM
Improved Pioneer Protocol

Advantages

- Local time measurement
 - No non-deterministic network latency
 - Resolution is limited $\Rightarrow \Delta t_{\text{checksum}} \uparrow$

- Unique platform identification
 - Link hardware configuration to TPM signing key
 - Prevents proxy attack

- Basic TPM support
 - Only device driver
 - No adapted bootloader
 - No adapted operating system

- Immune to TPM reset attack
 - $TSN_1 \neq TSN_2$
Remote attestation on legacy operating systems with trusted platform modules

Outline

1. Remote attestation
 - Motivation
 - Trusted computing platforms
 - Legacy platforms

2. Legacy OS with TPM
 - TPM time stamping
 - Improved Pioneer Protocol
 - Trusted bootloader

3. Conclusions
Remote attestation on legacy operating systems with trusted platform modules

Legacy OS with TPM

Trusted bootloader

Configuration identification

Hardware upgrade

- Adversary can speed up \texttt{cksum()}
- Replace CPU or RAM

- TCG chain of trust until bootloader
 1. Bootloader records CPUID in TPM
 2. Bootloader benchmarks \texttt{cksum()} and stores $\Delta t_{\text{expected}}$ in TPM

- TCG attestation to report hardware configuration
- Hardware upgrade detected
Conclusions

- Trusted computing support limited
- Secure operating system required to offer application level attestation
- Pure software based attestation for legacy platform has shortcomings
- Bridge the gap by using TPM time stamping and trusted bootloader