Empirical study on
software obfuscation

Ceccato Mariano
Fondazione Bruno Kessler-IRST, Trento, Italy

. D(Barrier slicing approach

’[‘ ‘,,;\\ A =7 /’f;

{ ECCl FR
\ AV A N | n;m:,» \

F
BR

« A portion of the program is moved and it runs on
the server, thus it is protect against tampering.

Program P <-

\Un-trusted server) .. < Trusted server:'~--j-5

2

- 3< Reference architecture

FONDAZIONE
BRUNO KESSLER
Untrusted platform (client) Trusted platform (server)
Tag
sequence

____________ =2 Tag sequence
” verifier

Monitor factory

Replace
monitor

N D(Considerations

Obfuscation offer a limited level of protection: it can be
broken with enough effort.

 Need to measure this level of protection.

There is a general acceptance that obfuscation is useful in
protecting intellectual property, but...

 (ODbfuscation has not been validated

« Different obfuscation methods have never been
compared.

* No study on which method to adopt to protect a given
application
— It may depend on what | want to protect.

» 3(Research questions

« What is the level of protection offered by obfuscation?

— How much obfuscation make the understanding effort
increase?

— How obfuscation affects the correctness of maintenance/attack
tasks?

— How do different obfuscation techniques compare?

1 Student guy = new Student ();
String name = “Mathematics”;
Course course = new Course (name) ;

guy . apply (course) ;
course.commitChanges () ;

o Wb

yl x1 = new yl1();

String x2 = “Mathematics”;
y2 x3 = new y2(x2);
x1.z1(x3);

x3.z2();

o WbhRr

» 3(The experiment

D ! ‘\
L uu ER

 We ask subjects to apply some selected attacks
to a set of objects (network) applications.
« We study how obfuscation impacts on

— time required to perform the attacks
— correctness of the attacks

x «-.-,
| Network '
VolIP client eTwor - — = VolP server

- D(Experiment requirements

* Network application
 Decompiled code

* Code browsing tools
* Debuggers

* Possibility to browse the network
— API specifications

->¢{ Kinds of attacks

« Spotting specific functionalities
— Observable features

« Tampering with the application

— Make the application do something that is not available is the
original code

-5¢

* 4 groups
— 2 applications
— 2 sessions

* 2 hours per session
— 2 spotting tasks
— 2 tampering tasks

Experimental design

15t session Clear Obfuscated
App1 G1 G2
App2 G4 G3

2"d session Clear Obfuscated
App1 G3 G4
App2 G2 G1

- D(Preliminary lecture

* Preliminary lecture to make the subjects
aware of the experimental environment

— IDE

— Obfuscation

— Debugging facilities
— Pre questionnaire
— Informed consent

— Exercise on an application

* To practice with the environment and mitigate the
learning effect.

10

-5¢ Experimental sessions

« 2 experimental sessions
— Description of the application
— Either clear or obfuscated source code
— Possibility to run the (modified) code
— Four paper sheets (each one contains a task)
— A post questionnaire

11

» 3(Controlled environment

« All the variables in the experiment are controlled

* By replicating the experiment by modifying just one
variable we can study how that variable affect the result
— Subject experience
— Obfuscation technique
— Tool used in the attack
— Programming language

oY O % O me
)) &) SO 2

» 3(Observations

 Different subjects used different strategies
— Comments are added to obfuscated methods

— Identifiers are changed into meaningful
names

— The debugger is used
— Code is just inspected and never executed

— Comprehension start from libraries usage (not
obfuscated)

13

-5¢ Replications

* Trento: master students
— Software analysis and testing
— Laboratory of software analysis (TBD)

* Torino: PhD students
— Software development advanced techniques

e Other?

14

