
Continuous Replacement 1 / ??

Continuous Replacement

Jasvir Nagra, Christian Collberg

November 19, 2007

Overview

Continuous Replacement 2 / ??

Clientside

Server

scheduler
block

block

request

service

piggy−

backed

block

request

block

service

response

mutator

Client

Code

Blocks

Blocks

Serverside

C’s

C’s

C’s

Level of tamperproofing

Continuous Replacement 3 / ??

The level of tamperproofing is determined by

1. the fraction of blocks that the client keeps

Level of tamperproofing

Continuous Replacement 3 / ??

The level of tamperproofing is determined by

1. the fraction of blocks that the client keeps
2. the rate by which the server pushes mutated blocks to the

client

Level of tamperproofing

Continuous Replacement 3 / ??

The level of tamperproofing is determined by

1. the fraction of blocks that the client keeps
2. the rate by which the server pushes mutated blocks to the

client
3. the rate by which the adversary can analyze the continuously

changing program in the client’s bag-of-blocks.

Performance

Continuous Replacement 4 / ??

1. Generate blocks which take as long time to analyze as
possible

Performance

Continuous Replacement 4 / ??

1. Generate blocks which take as long time to analyze as
possible

2. Little network traffic ⇒ low block replacement rate

Performance

Continuous Replacement 4 / ??

1. Generate blocks which take as long time to analyze as
possible

2. Little network traffic ⇒ low block replacement rate
3. Client’s bag-of-blocks must never contain a complete and

correct program.

Performance

Continuous Replacement 4 / ??

1. Generate blocks which take as long time to analyze as
possible

2. Little network traffic ⇒ low block replacement rate
3. Client’s bag-of-blocks must never contain a complete and

correct program.

■ ⇒ Prevents the adversary taking snapsshots of the bag
to analyze off-line.

Performance

Continuous Replacement 4 / ??

1. Generate blocks which take as long time to analyze as
possible

2. Little network traffic ⇒ low block replacement rate
3. Client’s bag-of-blocks must never contain a complete and

correct program.

■ ⇒ Prevents the adversary taking snapsshots of the bag
to analyze off-line.

■ Ideally, even if the client saves a copy of all the blocks it
has ever seen, the adversary still shouldn’t be able to
fully analyze the code (hard)

Block 1: Unrolled block

Continuous Replacement 5 / ??

■ Unroll a loop and send the client one iteration at a time.

 j = j + i;

for (i=0; i < 3; i++) {

}

 k = j * 2;

 i++;

 k = j * 2;

 j = j + i;

 i++;

 j = j + i;

 k = j * 2;

 k = j * 2;

 j = j + i;

 i++;

Block 1: Unrolled block

Continuous Replacement 5 / ??

■ Unroll a loop and send the client one iteration at a time.
■ Renumber and/or obfuscate each loop body differently

 j = j + i;

for (i=0; i < 3; i++) {

}

 k = j * 2;

 i++;

 k = j * 2;

 j = j + i;

 i++;

 j = j + i;

 k = j * 2;

 k = j * 2;

 j = j + i;

 i++;

Block 1: Unrolled block

Continuous Replacement 5 / ??

■ Unroll a loop and send the client one iteration at a time.
■ Renumber and/or obfuscate each loop body differently
■ ⇒ Difficult for the adversary to reconstitute the loop.

 j = j + i;

for (i=0; i < 3; i++) {

}

 k = j * 2;

 i++;

 k = j * 2;

 j = j + i;

 i++;

 j = j + i;

 k = j * 2;

 k = j * 2;

 j = j + i;

 i++;

Block 2: Hashing block

Continuous Replacement 6 / ??

■ Compute a hash over another block and return the result to
the server.

Block 3: Oblivious Hashing Block

Continuous Replacement 7 / ??

■ Weave a hash computation into the control flow:

 print(20)

 k = j * 2;

 print(20)

 HASH −= 10

 k = j * 2;

 k = j * 2;

 k = j * 2;

 j = j + i;

 k = j * 2;

 j = j + i;

 i++;

 j = j + i;

 k = j * 2;

 j = j + i;

 i++;

 HASH ^= 2

 k = k ^ 2;

 print(10);

HASH += 2

 k = k ^ 2;

 print(10);

Block 3: Oblivious Hashing Block

Continuous Replacement 7 / ??

■ Weave a hash computation into the control flow:

1. Compute the hash-value as a side-effect of the real
control flow

 print(20)

 k = j * 2;

 print(20)

 HASH −= 10

 k = j * 2;

 k = j * 2;

 k = j * 2;

 j = j + i;

 k = j * 2;

 j = j + i;

 i++;

 j = j + i;

 k = j * 2;

 j = j + i;

 i++;

 HASH ^= 2

 k = k ^ 2;

 print(10);

HASH += 2

 k = k ^ 2;

 print(10);

Block 3: Oblivious Hashing Block

Continuous Replacement 7 / ??

■ Weave a hash computation into the control flow:

1. Compute the hash-value as a side-effect of the real
control flow

2. Compute the hash as the result of challenge input values

 print(20)

 k = j * 2;

 print(20)

 HASH −= 10

 k = j * 2;

 k = j * 2;

 k = j * 2;

 j = j + i;

 k = j * 2;

 j = j + i;

 i++;

 j = j + i;

 k = j * 2;

 j = j + i;

 i++;

 HASH ^= 2

 k = k ^ 2;

 print(10);

HASH += 2

 k = k ^ 2;

 print(10);

Block 4: Good-block-bad-block

Continuous Replacement 8 / ??

■ Send the client a buggy block A and a fixup block B.

 k = k / 2

k = k / 2......

 k = 10

 y = f(k);

k = 20;

y = f(k)

Block 4: Good-block-bad-block

Continuous Replacement 8 / ??

■ Send the client a buggy block A and a fixup block B.
■ A contains a bug

 k = k / 2

k = k / 2......

 k = 10

 y = f(k);

k = 20;

y = f(k)

Block 4: Good-block-bad-block

Continuous Replacement 8 / ??

■ Send the client a buggy block A and a fixup block B.
■ A contains a bug
■ Before A’s result is used, the fixup block B corrects it.

 k = k / 2

k = k / 2......

 k = 10

 y = f(k);

k = 20;

y = f(k)

Block 4: Good-block-bad-block

Continuous Replacement 8 / ??

■ Send the client a buggy block A and a fixup block B.
■ A contains a bug
■ Before A’s result is used, the fixup block B corrects it.
■ The block scheduler arranges for A and B not to be in the

client’s bag at the same time.

 k = k / 2

k = k / 2......

 k = 10

 y = f(k);

k = 20;

y = f(k)

Block 4: Good-block-bad-block

Continuous Replacement 8 / ??

■ Send the client a buggy block A and a fixup block B.
■ A contains a bug
■ Before A’s result is used, the fixup block B corrects it.
■ The block scheduler arranges for A and B not to be in the

client’s bag at the same time.
■ ⇒ Bag-of-blocks is always incorrect.

 k = k / 2

k = k / 2......

 k = 10

 y = f(k);

k = 20;

y = f(k)

Block 5: Mutation block

Continuous Replacement 9 / ??

■ Mini-obfuscator blocks modify blocks in the bag:

x with y

in

Substitute

k = k * 2

 k = k / 2

x = f(k)

k = 20;

Block 5: Mutation block

Continuous Replacement 9 / ??

■ Mini-obfuscator blocks modify blocks in the bag:

1. introduce bugs into blocks after they’ve executed,

x with y

in

Substitute

k = k * 2

 k = k / 2

x = f(k)

k = 20;

Block 5: Mutation block

Continuous Replacement 9 / ??

■ Mini-obfuscator blocks modify blocks in the bag:

1. introduce bugs into blocks after they’ve executed,
2. correct bugs in incorrect blocks before they execute,

x with y

in

Substitute

k = k * 2

 k = k / 2

x = f(k)

k = 20;

Block 5: Mutation block

Continuous Replacement 9 / ??

■ Mini-obfuscator blocks modify blocks in the bag:

1. introduce bugs into blocks after they’ve executed,
2. correct bugs in incorrect blocks before they execute,
3. transform one block into another block

x with y

in

Substitute

k = k * 2

 k = k / 2

x = f(k)

k = 20;

Block 5: Mutation block

Continuous Replacement 9 / ??

■ Mini-obfuscator blocks modify blocks in the bag:

1. introduce bugs into blocks after they’ve executed,
2. correct bugs in incorrect blocks before they execute,
3. transform one block into another block

■ ⇒ keeps mutation-rate high and communication-rate low.

x with y

in

Substitute

k = k * 2

 k = k / 2

x = f(k)

k = 20;

Block 6: API Mutation block

Continuous Replacement 10 / ??

■ Modifies the client code in the bag to effect a client-server
API change.

Block 6: API Mutation block

Continuous Replacement 10 / ??

■ Modifies the client code in the bag to effect a client-server
API change.

■ Example RPC API transformations:

Block 6: API Mutation block

Continuous Replacement 10 / ??

■ Modifies the client code in the bag to effect a client-server
API change.

■ Example RPC API transformations:

1. rename arguments

Block 6: API Mutation block

Continuous Replacement 10 / ??

■ Modifies the client code in the bag to effect a client-server
API change.

■ Example RPC API transformations:

1. rename arguments
2. reorder arguments

Block 6: API Mutation block

Continuous Replacement 10 / ??

■ Modifies the client code in the bag to effect a client-server
API change.

■ Example RPC API transformations:

1. rename arguments
2. reorder arguments
3. add bogus arguments

Block 6: API Mutation block

Continuous Replacement 10 / ??

■ Modifies the client code in the bag to effect a client-server
API change.

■ Example RPC API transformations:

1. rename arguments
2. reorder arguments
3. add bogus arguments
4. change argument types

Block 6: API Mutation block

Continuous Replacement 10 / ??

■ Modifies the client code in the bag to effect a client-server
API change.

■ Example RPC API transformations:

1. rename arguments
2. reorder arguments
3. add bogus arguments
4. change argument types
5. calls can be split in two

Block 6: API Mutation block

Continuous Replacement 10 / ??

■ Modifies the client code in the bag to effect a client-server
API change.

■ Example RPC API transformations:

1. rename arguments
2. reorder arguments
3. add bogus arguments
4. change argument types
5. calls can be split in two

■ ⇒ the client cannot ignore these blocks if it wants to
continue getting service from the server

Block 6: API Mutation block

Continuous Replacement 10 / ??

■ Modifies the client code in the bag to effect a client-server
API change.

■ Example RPC API transformations:

1. rename arguments
2. reorder arguments
3. add bogus arguments
4. change argument types
5. calls can be split in two

■ ⇒ the client cannot ignore these blocks if it wants to
continue getting service from the server

■ ⇒ makes it hard for client to ignore any blocks.

Block 7: Unexecutable block

Continuous Replacement 11 / ??

■ This type of block will, if executed, cause the program to
crash or otherwise malfunction.

fork ();

rm *

while (1)

k = 0 / 0

 k = 30 k = 20

Block 7: Unexecutable block

Continuous Replacement 11 / ??

■ This type of block will, if executed, cause the program to
crash or otherwise malfunction.

■ ⇒ makes it harder for the adversary to execute blocks in
isolation to experimentally figure out what each one does.

fork ();

rm *

while (1)

k = 0 / 0

 k = 30 k = 20

Block 8: Server-side block

Continuous Replacement 12 / ??

■ A server-side block passes its arguments to the server and
invokes the “real” block on the server.

Block 8: Server-side block

Continuous Replacement 12 / ??

■ A server-side block passes its arguments to the server and
invokes the “real” block on the server.

■ ⇒ bag-of-blocks is always incomplete

One Block to rule them all. . .

Continuous Replacement 13 / ??

■ We may be able to get away with just one block kind,
provided we allow blocks to access the VM itself.

■ The VM consists of the bag of blocks ($BLOCKS), the next
block to execute ($NEXT), the current location ($PC), and
the interpretation loop.

■ We can even get away without an actual interpretation loop
by threading the blocks, i.e. as its last instruction, each
block jumps to the next block.

One Block to find them. . .

Continuous Replacement 14 / ??

$PC

Client

instruction

instruction

instruction

.....

$BLOCKS

$NEXT

One Block to bring them all. . .

Continuous Replacement 15 / ??

$BLOCKS[84][3] = ’load v’ % Modify another block
kill x = x + 1
$BLOCKS[56] = nil % Invalidate block 56
y = y - 3
$BLOCKS[84][3] = ’load v’ % Modify another block
p(5)
$NEXT = 82 % Next block to execute
z = z + 1
$GET(88) % Hint: we may need block 88 soon

. . . and in the darkness bind them!

Continuous Replacement 16 / ??

■ We have two options as to how we should obfuscate the
blocks:

■ We could try to make the blocks as similar as possible:
padded to the same size, obfuscated to have the same
structure (“every block contains exactly one loop and one
method call”), etc. This increases stealth and makes it hard
for the attacker to know which blocks it can ignore and
which it has to execute.

■ Or, we could try to make the blocks as different as possible
to make analysis of the blocks as hard as possible.

Summary

Continuous Replacement 17 / ??

■ We have several knobs to tweek:

Summary

Continuous Replacement 17 / ??

■ We have several knobs to tweek:

1. size of the client’s bag

Summary

Continuous Replacement 17 / ??

■ We have several knobs to tweek:

1. size of the client’s bag
2. rate of block push

Summary

Continuous Replacement 17 / ??

■ We have several knobs to tweek:

1. size of the client’s bag
2. rate of block push
3. frequency of each kind of block

Summary

Continuous Replacement 17 / ??

■ We have several knobs to tweek:

1. size of the client’s bag
2. rate of block push
3. frequency of each kind of block
4. level of obfuscation of each block

Summary

Continuous Replacement 17 / ??

■ We have several knobs to tweek:

1. size of the client’s bag
2. rate of block push
3. frequency of each kind of block
4. level of obfuscation of each block
5. block size (basic block, function, module)

Summary

Continuous Replacement 17 / ??

■ We have several knobs to tweek:

1. size of the client’s bag
2. rate of block push
3. frequency of each kind of block
4. level of obfuscation of each block
5. block size (basic block, function, module)

■ Vasanth Bala, Evelyn Duesterwald, Sanjeev Banerjia,
Dynamo: a transparent dynamic optimization system, PLDI
2000: 1-12

