
Remote entrusting by
remote invariants

monitoring
Stefano Di Carlo

Politecnico di Torino

RE-TRUST quaternary meeting 18-19 Dec. 2008

Goal

• Detecting software modifications by
monitoring automatically inferred invariant
properties of an application

Outline

• Invariants overview

• Remote entrusting and invariants

• A practical example

• Conclusions and future activities

Outline

• Invariants overview

• Remote entrusting and invariants

• A practical example

• Conclusions and future activities

What is an Invariant?

• An invariant is a property true at a certain
point(s) of a program execution

• An invariant is composed of:

- A property: e.g., variable x always contains a
value greater than 0;

- A location: the point of the program execution
where the property is verified (e.g., before
calling the function f())

An example

• Invariants provide information about the
inner logic of the program

Program code:
for (i=1; i<N; i++) \\N>1
{
 //code to execute
 …
 return a*2+b*2;
}

Invariants:
• i is always greater than 0
• the return value is always even

Common uses

• Invariants have been introduced in the field
of software engineering :

- Software Testing

- Software Design

- Software Optimization

- Bugs fix

- …

Definition

• Static analysis: static analysis of the
program code only (no information about
code execution is used)

- Example: analysis of the data-flow

- Drawback: it provides information about the
context of the program only

Definition

• Dynamic analysis: it uses execution
traces to analyze the behavior of a program
during its execution

- Performed through three different phases:

‣ Program instrumentation

‣ Instrumented program execution

‣ Invariant properties search

Dynamic analysis
Original
program

Instrumented
program

Program
traces

Invariants

Dynamic analysis

• The program is instrumented to trace the
content of each variable during its
execution

Original
program

Instrumented
program

Program
traces

Invariants

Dynamic analysis

• The instrumented program is executed
under a meaningful workload

Original
program

Instrumented
program

Program
traces

Invariants

Dynamic analysis

• Patterns and relations are searched over
the program traces to define invariant
properties

Original
program

Instrumented
program

Program
traces

Invariants

Outline

• Invariants overview

• Remote entrusting and invariants

• A practical example

• Conclusions and future activities

Assumption

• Software modifications will probably lead
to the modification of some of the invariant
properties defined on the original code

Architecture

Untrusted platform (U)

HW
OS

P

Monitor

Trusted platform (T)

TAG seq. TAG seq.
Checker

Monitor & Checker

• Collects variable traces
and send them to the
server

• Variable traces includes:

- Variable identifiers

- Values

- Program locations

• Receives variables traces

• Based on the identifiers
names and locations
checks whether
invariants are respected
or not

MONITOR CHECKER

Open issues

• Invariants in remote entrusting present
three main issues:

- Reliability

- Selection

- Relevance

Reliability

• There is not a strict relationship between
invariants violation/integrity and a attacks

- Invariants violation => Attack

- Invariants respected => No attack

• The two conditions are not always
true

Reliability

• Two main causes:

- False positive: invariants are searched over a
set of n executions, these may lead to properties
not completely specified

- False negative: missing properties due to
lacks of the tools used to define the invariants

Selection

• Ideal solution: using invariants defined
on variables critical for the integrity of the
program

• Drawbacks:

- Usually no invariants can be defined on these
variables

- If invariants exist their are not relevant

Selection

• Focus on the properties and not on the
relative variables

• Drawbacks:

- Number of invariants not manageable

• Solutions:

- Considering only core functions

- Increasing the number of iterations

Relevance

• An invariant is relevant if it provides useful
information

Relevance

• Using invariants in a different way, selecting
those invariants usually considered not
relevant in other contexts

Outline

• Invariants overview

• Remote entrusting and invariants

• A practical example

• Conclusions and future activities

Target application

• Remote anagrams searching

Dictionary

2

Dictionary

n

REQUEST (String , Dictionary)

Variable Tracing

Variable Tracing

Variable Tracing

RESPONSE (List of anagrams)

E
L
A

B
O

R
A

T
IO

N

C
H

E
C

K
IN

G

Dictionary

1

Untrusted host
Trusted host

Monitor & Checker

• Controlled invariants

- /ncount == 10

- /words2 == [DIED,
NICK, NECK,
DAMIEN,
ANTICKED,
RICKETY,
INACTIVITY,
IODINE,

• Controlled invariants

- /adjacentdups == 0

Version A Version B

OK

KO

Some measures

Outline

• Invariants overview

• Remote entrusting and invariants

• A practical example

• Conclusions and future activities

Conclusions

• Remote invariant monitoring can be
efficiently included in a remote entrusting
architecture

• Not 100% secure, nevertheless it can be
combined with different mechanisms

Future works

• Ad-hoc invariants definition tool

• Flow automation

• Mutant code:

- How to write different versions of a program
performing the same functionality but having
different invariants?

