
Improvements using mobility 
for remote entrusting

RERERERE----TRUST Meeting, 19 Dec 2007TRUST Meeting, 19 Dec 2007TRUST Meeting, 19 Dec 2007TRUST Meeting, 19 Dec 2007

Paolo Falcarin



Why mobile code?

� Protections are typically embedded in 
application code

� The Attacker can look at executable and 
modify it (disassembler, debugger)

Politecnico di TorinoPolitecnico di TorinoPolitecnico di TorinoPolitecnico di Torino

Paolo Falcarin 2



Remote entrusting with mobility

� Mobile code can be:

♦ Integrity-checker

♦Functional code

� Mobile code is replaced during 

Politecnico di TorinoPolitecnico di TorinoPolitecnico di TorinoPolitecnico di Torino

Paolo Falcarin

� Mobile code is replaced during 
execution by trusted server

� Server needs a library of different 
integrity-checkers ready to be sent

3



Mobile Code

Politecnico di TorinoPolitecnico di TorinoPolitecnico di TorinoPolitecnico di Torino

Paolo Falcarin

Host Host Host Host is untrusted Remote HostRemote HostRemote HostRemote Host: send mobile code

BinderBinderBinderBinder: it is responsible of proper installing 
of mobile code (interlocking)



Mobile code Binder 

� Two main categories of binder

♦ Embedded in application native code

♦ Extension to VM for managed code

� Former prototypes on JVMs

Politecnico di TorinoPolitecnico di TorinoPolitecnico di TorinoPolitecnico di Torino

Paolo Falcarin

Former prototypes on JVMs

♦Dynamic AOP

♦ Java 5 JVMTI interface

� Recent prototype in native code

5



Mobile code and JVM 

� Dynamic AOP platform:

♦ allows add and replace aspect/classes as 
integrity checkers

♦ Easy design and mobility handling

♦ Performances were not good

Politecnico di TorinoPolitecnico di TorinoPolitecnico di TorinoPolitecnico di Torino

Paolo Falcarin

♦ Performances were not good

� JVM 5 extension on JVMTI interface

♦Allows read-access to code memory image

♦Mobility to be implemented from scratch 
and not easy to write modules

♦ Better performance

6



Safety features of the JVM

� Unspecified memory layout: JVM stores 
Application in different data areas

� When the JVM loads a class file, it decides 
where to store the bytecodes.

� An attacker cannot predict where the 

Politecnico di TorinoPolitecnico di TorinoPolitecnico di TorinoPolitecnico di Torino

Paolo Falcarin 7

� An attacker cannot predict where the 
class’ data will be stored

� The way in which a JVM lays out its inner 
data depends on JVM implementation



JVM and debugger

� Dynamic AOP and JVMTI rely on 
debugger 

� In both cases attackers cannot run 
client in debug mode
♦ Is this enough to thwart them?

Politecnico di TorinoPolitecnico di TorinoPolitecnico di TorinoPolitecnico di Torino

Paolo Falcarin 8

♦ Is this enough to thwart them?

� Attacker should be smart to 
discover the checker behavior
♦Difficult access to mobile code  
♦Automating this attack before a new 
module arrives is not trivial 



Problems with JVMs prototypes

� Key was embedded in mobile module

� Discovery of secret key…to calculate 
checksums

� Replace aspect to disable checking but 
sending correct tags:

Politecnico di TorinoPolitecnico di TorinoPolitecnico di TorinoPolitecnico di Torino

Paolo Falcarin 9

Replace aspect to disable checking but 
sending correct tags:

♦Attacker intercepts mobile code

♦Hijack it to check original application

♦…While tampered one is running



Architecture with native code 

Politecnico di TorinoPolitecnico di TorinoPolitecnico di TorinoPolitecnico di Torino

Paolo Falcarin 10



Trusted node

� It is the mobile code provider

♦ It has a pool of integrity-checkers

♦Send such checkers to the untrusted 
node

Politecnico di TorinoPolitecnico di TorinoPolitecnico di TorinoPolitecnico di Torino

Paolo Falcarin

11

node

♦The more checkers we have 

=>the more robust is the protection 



Code replacement

� Binder:Binder:Binder:Binder: receives code from trusted node and 
insert mobile code in application memory

� A dummy area is instrumented in the 
application as a placeholder

Politecnico di TorinoPolitecnico di TorinoPolitecnico di TorinoPolitecnico di Torino

Paolo Falcarin

12



Mutation Engine Pool

� Collection of Integrity checkers
♦ Each one has a different algorithm

♦ They can be parameterized by hash key

♦ Each checker can be mutated depending on 
mutation rules

Politecnico di TorinoPolitecnico di TorinoPolitecnico di TorinoPolitecnico di Torino

Paolo Falcarin

13

mutation rules

� Mutation Goal:Mutation Goal:Mutation Goal:Mutation Goal: attacker will find hard to 
automatically recognize such checkers 
by patter-matching
♦ Similar to virus behavior



Fooling the checkers

� Van Oorschot et al. find out how to 
fool checkers:

♦Modified Operating System to intercept 
when an instruction of the application 
read from code segment 

Politecnico di TorinoPolitecnico di TorinoPolitecnico di TorinoPolitecnico di Torino

Paolo Falcarin

read from code segment 

♦System call is modified: checkers will 
always check original code while 
tampered one is running  

14



Self-Modifying Code

� Can be used to avoid former attack on checkers

� Self-modifying code alters its own instructions 
at run-time

� Data segment contain original code, used for 
checksum, while code segment contains code 

Politecnico di TorinoPolitecnico di TorinoPolitecnico di TorinoPolitecnico di Torino

Paolo Falcarin

checksum, while code segment contains code 
which is actually executed.

� The executable file structure is different from The executable file structure is different from The executable file structure is different from The executable file structure is different from 
the one created in memory at runthe one created in memory at runthe one created in memory at runthe one created in memory at run----timetimetimetime

� If attacker finds out checker function and 
calculate checksum on the executable files they 
are useless.

15



One step further

� Binder is embedded in application

� At load-time Binder downloads 
checkers and some functional code 

� Then it (self-)modifies the surrounding 
application in order to have a new 

Politecnico di TorinoPolitecnico di TorinoPolitecnico di TorinoPolitecnico di Torino

Paolo Falcarin

application in order to have a new 
memory structure

� Executable is then different from 
memory image

� Then Binder can handle mobile code 
replacement

16



Example of self-modifying code

♦This code modifies itself

♦ and cl,1 is executed

Politecnico di TorinoPolitecnico di TorinoPolitecnico di TorinoPolitecnico di Torino

Paolo Falcarin 17

♦This is another version 

of the same code



Mutations on Checkers

� Modify assembler code structure 
without changing its behavior

� Used to produce many version of 
checkers 

Politecnico di TorinoPolitecnico di TorinoPolitecnico di TorinoPolitecnico di Torino

Paolo Falcarin

18

checkers 

� Similar to obfuscation on assembly

� Example: recombination of 
operators or registry renaming



Prototype

� Protections applied:
♦Code Checksum

♦ Invariant checking

� How they are combined
2 Different Checkers calculate hash

Politecnico di TorinoPolitecnico di TorinoPolitecnico di TorinoPolitecnico di Torino

Paolo Falcarin

♦2 Different Checkers calculate hash

♦They differ for one invariant

� Prototype tested on 
♦Developed in C++

♦OS: Windows XP but working on Linux



Experimental Results

� Advantages

♦Cross-platform

♦Code relocation

♦Application structure in memory different 
form executable file

Politecnico di TorinoPolitecnico di TorinoPolitecnico di TorinoPolitecnico di Torino

Paolo Falcarin

20

form executable file

♦Customization for each instance

♦New Protections can be plugged in

� Weak points

♦Complex code development/instrumentation



Communication Protocol

� Authentication

♦ ISO Symmetric Key Three-Pass Mutual 
Authentication

♦Open issues:

Politecnico di TorinoPolitecnico di TorinoPolitecnico di TorinoPolitecnico di Torino

Paolo Falcarin

Open issues:

−Need to save client private key on 
untrusted host

−Algorithm is computationally expensive 



E Keep on server temporary key of client

E Client uses at boot time temporary 
key and not the private key 

F Client must save its private key and 

Private Key on Client

Politecnico di TorinoPolitecnico di TorinoPolitecnico di TorinoPolitecnico di Torino

Paolo Falcarin

F Client must save its private key and 
last temporary key



Key generation

� Use client code as data source

� Function embedded in mobile code 
arrives from server and selects a 
subset of bytes of code to make key

Politecnico di TorinoPolitecnico di TorinoPolitecnico di TorinoPolitecnico di Torino

Paolo Falcarin

subset of bytes of code to make key

� Mobile code and its function 
periodically updated at run-time

� The function can be customized for 
each client instance



The prototype

� Key Generation

♦First communication made with key 
hidden by server in client executable

−steganography

Client and server generate temp key 

Politecnico di TorinoPolitecnico di TorinoPolitecnico di TorinoPolitecnico di Torino

Paolo Falcarin

♦Client and server generate temp key 
using function sent by server

♦Use this temporary key for next 
communications

♦New module=> new key



♦Advantages:

−Modify Less Significant Bits of each pixel 
with information to hide

−Such modification does not damage 
image quality

Steganography with images

Politecnico di TorinoPolitecnico di TorinoPolitecnico di TorinoPolitecnico di Torino

Paolo Falcarin

image quality

−Easy to implement

− Image modifiable at run-time

♦Disadvantages:

− Image not always available in all 
programs



Steganography in code
� Same operations in i386-like architectures can be 
expressed in 2 ways:

♦ Add %eax, $50

♦ Sub %eax, $50

� This sequence can encode a bit

♦ Add-sub -> 1

Politecnico di TorinoPolitecnico di TorinoPolitecnico di TorinoPolitecnico di Torino

Paolo Falcarin

♦ Add-sub -> 1

♦ Sub-Add -> 0

� Disadvantages:

♦ Codice read from executable file

♦ File not modifiable at run-time

♦ Attacker may find which memory areas are used 
by function in mobile code


