RE-TRUST quarterly meeting, 18.12.2007

Introduction to

Physically Observable Cryptography

by Sebastian Faust, ESAT/COSIC

Outline

- 1. Gap in Provable Security
- 2. Approach of Micali & Reyzin
- 3. Axioms of Micali & Reyzin Model
- 4. Security Model of M&R
- 5. Assumptions and definitions of POC
- 6. A proof in the M&R Model
- 7. Outlook

1. Gap in Provable Security

Approach in provable security

- Develop adversarial model
- Define what is understood under the security of algorithm
- Prove that no adversary can exist under reasonable assumptions

Proof by contradiction

- Given F' against the algorithm, build F against assumption
- ➤ F uses F' → F has to simulate a "real-looking" environment for F'

$$C \rightarrow F' \rightarrow M \longrightarrow N \rightarrow F' \rightarrow M \rightarrow p, c$$

Traditional Provable Security

- Cryptographic algorithms are modeled as black boxes
- Adversary may have access to inputs and outputs
- Inner workings during computation are <u>not</u> revealed

Gap to real-world implementations

- Practical attacks on provably secure systems exist
- > Not due to failure in proof but by taking a step outside of the model
- Physical devices do not behave as black-boxes

→ Side-channel attacks provide the adversary with a partial view on the inner working of implementations

Physically Observable Cryptography

- 1. Define axioms specifying the physical world and the therein existent physical devices
- 2. Define a formal security model for physical devices incorporating physical observers
- 3. Develop new assumptions and definitions
- 4. Prove security properties for more enhanced constructions against **all** observing adversaries.

Goal:

Given a physical device P computing a function f(x) s.t. only some

information L_{P.f(x)} is leaked, can we use it to build more complex schemes?

3. Axioms of Micali & Reyzin Model

- 1. Computation, and only computation leaks information
 - Unaccessed memory does not leak any information
- 2. Computation can have different leakages on different computers
 - Real-world implementation of an algorithm may vary
 - → E.g. shielded hardware will leak different than non-shielded
- 3. Information leakage depends on the chosen measurement
 - Not all leakage can be observed simultanously

3. Axioms of Micali & Reyzin Model

- 4. Information leakage is local
 - The leakage of a device is independent of computation that takes place before the device is invoked or after it halts.
 - No modular design would be possible if the behavior of components changes depending on the context of usage
 - E.g. if A produced a properly shielded device used in computers of company B, then B should not damage the shielding
- 5. All leaked information is efficiently computable from the computer's internal configuration
 - Leakage is a polynomial-time computable function of algorithm's internal configuration, chosen measurement and randomness
 - Implies that leakage is efficiently simulatable knowing all inputs

Security Model of Micali & Reyzin:

- 1. Abstract notion to model computation
- 2. Physical security model & adversary

1. Abstract notion to model computation

Can we use traditional Turing machines? No! Why?

i. Axiom 1: unaccessed memory leaks no information

→ device has to seperate memory that is used from memory that is not <u>But:</u> traitional TM accesses tape sequentially

Solution: augment TM with random access memory

ii. Axiom 4: leakage is independent of computation that follows or precedes

➔ abstract notion has to isolate one portion of computation from another

But: Traditional notion of computation uses a single TM

→ internal configuration of TM incorporates all future computation

Solution: use series of TMs each with own memory space

Abstract virtual-memory computer $A=(A_1, ..., A_n)$

Collection of special TMs (VTM) A_i invoking each other as subroutines

KU Leuven – COSIC/ESAT

Abstract virtual-memory computer $A=(A_1, ..., A_n)$

A₁ is invoked first and its input/output = input/output of A

KU Leuven – COSIC/ESAT

Abstract virtual-memory computer $A=(A_1, ..., A_n)$

Each VTM A_i has access to

- traditional input, output, work and random tape of a TM
- random access to a virtual address space (VAS): unbounded array of bits that start at address 1 and goes to indefinite
 - \rightarrow VAS_i can only be accessed by VTM_i
- VAS-access tape to access VAS

KU Leuven – COSIC/ESAT

Abstract virtual-memory computer $A=(A_1, ..., A_n)$

- ➤ VTM A_i only "thinks" that it has own individual VAS → reality: all share a single *physical address space* (PAS). Why?
 - Parameter passing
 - Axiom 1: Access real content as little as possible

Abstract virtual-memory computer $A=(A_1, ..., A_n)$

Virtual-Memory Manager (VMM) maps individual VASes to unique PAS:

- never accesses content of memory, only remapping of addresses
- VMM allows for parameter passing among different VTMs
- Generates new VAS initialized with 0 when VTM is invoked

Calling VTMs as subroutines:

- A_1 writes down on it subroutine call tape:
- \succ name of A₂
- > a sequence of I addresses a_1, \ldots, a_l in its VAS for the input of A_2
- \succ a sequence of L addresses b_1, \dots, b_L in its VAS to store the output of A_2

Calling VTMs as subroutines:

Example:

 A_1 calls A_2 on input 110 (I=3) and A_2 has ouput 10 (L=2)

A₁ goes in CAL (call) state and suspends its computation

- \succ VMM creates new VAS for A₂ and ensures that:
 - Maps first I VAS location of A₂ to the same PAS location as a_i in VAS of A₁
 - all other locations in the VAS of A₂ map to blank PAS locations

Calling VTMs as subroutines:

Example:

 A_1 calls A_2 on input 110 (I=3) and A_2 has ouput 10 (L=2)

A₂ enters RUN state with

- input tape contains location where to find input for A₂
- other tapes point to blank

Calling VTMs as subroutines:

When A_2 ends (END):

- \blacktriangleright output tape of A₂ contains addresses of its VAS mapping to the output in PAS
- VMM remaps location b₁,..., b_L of VAS from A₁ to the same PAS location where A₂ has stored ist output.
- \succ A₁ resumes operation

Security Model of Micali & Reyzin:

- 1. Abstract notion to model computation
- 2. Physical security model and adversary

- 2. Physical security model
- ➢ Goal: Incorporate the leakage of an implementation
- Problem: Abstract virtual-memory computer may have different physical implementations
 different leakage
- Idea: Augement abstract VTM with a leakage function to cover all possible leakages
- → Abstract VTM A + Leakage function L = physical VTM P=(L,A)
 - P runs computation specified by abstract VTM A and incorporates leakage L.

Physical VTM $P_i = (L_i, A_i)$:

- \succ L_i: leakage function with three inputs L(C,M,R):
 - 1. current internal configuration C: binary string that includes
 - information of the touched elements of all tapes of A_i
 - locations of all heads of A
 - current state of A_i
 - 2. setting/specification of the measuring system M
 - 3. random noise R of the measurement

Physical virtual-memory computer $P = (P_1, ..., P_n)$:

- Combination of physical VTMs P_i
- If A = (A₁,...,A_n) is abstract computer then P is a physical implementation of A
- > Notation $f_P(x)$: function computed by P on input x

Adversary F:

- ➢ F can observe the computation of every single physical VTM P_i
- F can adaptively specify a measurement M for each step of the computation

Definition 1:

A physical VTM is *trivial* if its leakage function reveals its entire configuration and *non-trivial* otherwise.

Fundamental Assumption of POC:

There exists a non-trivial physical VTM.

Definition (physical world):

A polynomial-time deterministic physical computer P is a *PO one-way function* if for any polynomial-time adversary F, the following probability is negligible in k:

 $Pr[x \leftarrow^R \{0,1\}^k; y \leftarrow P(x) \hookrightarrow F(1^k) \rightarrow state; z \leftarrow F(state, y) : f_P(z) = y]$

P is a PO one-way permutation: f_P is length-preserving + bijective

Intuition: P is a PO one-way function if it computes a function f_P that is hard to invert despite the leakage from P's computation.

Notation: $y_P \leftarrow P(x_P) \hookrightarrow F(x_F) \rightarrow y_F$

- F runs on input x_F and observs a physical computer P on input x_P
- ▶ P halts with output $y_P \rightarrow F$ halts with output y_F

Claim 1:

If P is a PO one-way permutation then P' with $f_{P'}(\cdot) = f_{P}(f_{P}(\cdot))$ is also a PO one-way permutation.

Proof (Idea):

- 1. Construction of $P'=(P_0,P)$:
 - > Note that P is PO owp and P_0 is a trivial VTM (\rightarrow leaks everything!)
 - P₀ calls P twice on different inputs and manages the parameter passing. In more details we have:

1. P_0 prepares tapes for subroutine call to $y_1 = P(x)$

- 2. P computes $y_1 = f_P(x)$
- 3. P_0 prepares tapes for subroutine call $P(y_1)$
- 4. P computes $y_2 = f_P(y_1)$
- 5. P_0 places the address of y_2 on the output tape

2. Prove one-wayness of P'

Show that given $y_2 = f_P(f_P(x))$ computed by P', it is difficult to find x despite the leakage of P'

Reduction (1):

Assume the existence of an adversary F' that

- > observes P' \rightarrow provides measurement M and obtains leakage L_M
- > gets y_2 as input
- outputs x (i.e. inverts P')

Reduction (2):

Build adversary F that attacks the assumption (i.e. one-wayness of P):

- Observes target PO one-way permutation P
- ▶ Gets $y_1 = f_P(x)$ as input
- Uses F' as subroutine and simulates environment by
 - producing a consistent input $y_2 = f_P(y_1)$
 - producing indistinguishable answers to measurements of F'
- outputs x (i.e. inverts owp P)

27/35

1. P_0 prepares tapes for subroutine call to $y_1 = P(x)$

- \succ F answers measurement queries with entire configuration of P₀
 - content of call and input tape
- > Why is this indistinguishable?
 - P_0 is trivial \rightarrow leaks everything in real world as well
- Why can we compute the leakage?
 - P₀ only reassigns VAS pointers but no access to content of memory
 - Axiom 1: Unaccessed memory does not leak
 - Content of P₀'s VAS (in particular x) is not part of leakage because it is only remapped by VMM
 - Leakage of P₀ contains only addresses

- 2. P computes $y_1 = f_P(x)$
 - \succ F starts observing P(x)
 - If F' chooses measurement M then F will use M as his measurement while running P(x)
 - F forwards results of his own measurement to F'
 - Why is this indistinguishable?
 - Axiom 4: Leakage is local
 - → P(x) run in "isolation" has the same leakage distribution as P(x) introduced by P₀

3. P_0 prepares tapes for subroutine call to $P(y_1)$

Simulation is done as in stage 1

- 4. P computes $y_2 = f_P(y_1)$
 - > F runs abstract computer $A(y_1)$
 - For measurement M of F' return leakage L(C,M,R), where C is configuration of A.
 - Why is this indistinguishable?
 - Axiom 4: Leakage is local
 - ➔ Leakage of running P from scratch with input y₁ is the same as the leakage running P after y₁ is computed
 - Simulation efficient?
 - Axiom 5: Leakage is efficiently computable knowing all inputs for L
 - \rightarrow F was not observing the real P(y₁), but knows all inputs for L

5. P_0 places the address of y_2 on the output tape

- \succ F answers measurement queries with entire configuration of P₀
- > Why is this indistinguishable?
 - P_0 is trivial \rightarrow leaks everything
- Why is the simulation efficient?
 - Axiom 1: unaccessed memory does not leak
 - \rightarrow content of P₀'s VAS (in particular x) is not part of the leakage

Finally...

- > F computes $y_2 = f_P(y_1)$ and gives it to F'
 - \rightarrow F' answers with x

F outputs x

7. Outlook

Showing existence of further cryptographic primitives:

- Unpredictable PO generator from PO one-way permutation
- Digital Signature scheme from PO one-way permutation
- Pseudorandom Function from multiple observable PRNG

Analyze PO security of real-world algorithms and figure out necessary assumptions to prove security:

- RSA FDH Signatures in PO Random Oracle Model
- RSA CPA Encryption in PO Random Oracle Model
- OAEP Encryption, PSS Signatures,...

RE-TRUST quarterly meeting, 18.12.2007

4. Proof

Remarks:

- > Axiom 2: Different implementations have different leakage
 - Trivial machines leaking everything certainly exist
 - Using them to compute f(x) from x would make it easy to find an inverse
 - ➔ If leakage would be the same for all implementations, a PO one-way permutations would not exist
- Axiom 3: Information leakage depends on the chosen measurement

Incorporated into the model: F' has the power of choosing its own measurements at every step of the computation
1. Gap between real-world implementations and provable security

2. Physically Observable Cryptography

- 1. Define axioms specifying the physical world and the therein existent physical devices
- 2. Define a formal security model for physical devices incorporating physical observers
- 3. Assumption and definitions
- 4. Proof

Implications of the model:

- Implementations of cryptographic concstructions are build from physical VTMs each having an own leakage function L.
- \succ F has access to L and by querying for M obtains L(M,C,R).
- Parameter passing between VTMs can be done without leakage managed by trivial VTM.

4. Proof

- F' expects to observe a 5 stage computation:
- 1. P_0 prepares tapes for subroutine call to $y_1 = P_1(x)$
- 2. P_1 and its subroutines compute $y_1 = f_P(x)$
- 3. P_0 prepares tapes for subroutine call $P_1(y_1)$
- 4. P_1 and its subroutines compute $y_2 = f_P(y_1)$
- 5. P_0 places the address of y_2 on the output tape

Accessing Virtual-Memory

Notation:

 m_{A_i} : content of A_i 's VAS

 $m_{A_i}[j]$: bit value stored at location j

Read the bit $m_{A_i}[2]$:

Accessing Virtual-Memory

Read the bit $m_{A_i}[2]$:

Write location on VAS-access tape

Notation:

 m_{A_i} : content of A_i 's VAS

m_{A_i}[j]: bit value stored at location j

Accessing Virtual-Memory

Read the bit $m_{A_i}[2]$:

- Write location on VAS-access tape
- Enter special state (REA = read)

Notation:

 m_{A_i} : content of A_i 's VAS

m_{Ai}[j]: bit value stored at location j

Accessing Virtual-Memory

Read the bit $m_{A_i}[2]$:

- Write location on VAS-access tape
- Enter special state (REA = read)
 - \rightarrow m_{A_i}[2] appears on VAS-access tape

Notation:

 m_{A_i} : content of A_i 's VAS

m_{Ai}[j]: bit value stored at location j

Accessing Virtual-Memory

Write bit b to position 2 in VAS:

Write (2,b) on VAS-access tape

Notation:

 m_{A_i} : content of A_i 's VAS

m_{A_i}[j]: bit value stored at location j

Accessing Virtual-Memory

Write bit b to position 2 in VAS:

- Write (2,b) on VAS-access tape
- Enters special state (WRI = write)

Notation:

 m_{A_i} : content of A_i 's VAS

m_{Ai}[j]: bit value stored at location j

F has an additional ability to *observe* computation of a physical computer P

→ F gets leakage function L

F keeps configuration between invocations

KU Leuven – COSIC/ESAT

2. Security Model

Process of observing:

➢ If P halts: F is invoked again with name tape containing 0

Definition 2 (traditional world):

A one-way function is a function f: $\{0,1\}^* \rightarrow \{0,1\}^*$ such that there exists a polynomial-time Turing machine T that computes f and, for any polynomial-time adversary F, the following probability is negligible in k:

$$Pr[x \leftarrow^R \{0,1\}^k; y \leftarrow T(x); z \leftarrow F(1^k, y) : f(z) = y]$$

Definition attempt (physical world):

A physically observable (PO) one-way function is a function f: $\{0,1\}^* \rightarrow \{0,1\}^*$ such that there exists a polynomial-time physical computer P that computes f and, for any polynomial-time adversary F, the following probability is negligible in k:

$$Pr[x \leftarrow^R \{0,1\}^k; y \leftarrow P(x) \hookrightarrow F(1^k) \rightarrow state; z \leftarrow F(state, y) : f(z) = y]$$

Problem?

5. Assumptions & Definitions of POC

Problem:

- Definitions should not rely on any assumption
- Definition attempt relies on the fundamental assumption of the existence of a non-trivial physical computer

Solution:

Define not what it means for a function f to be one-way but for a particular physical computer P computing f.

Inputs and outputs of VTM:

Inputs and outputs of VTM are binary strings always residing in memory:

- \succ Input tape contains 1¹, the unary representation of the input length
- > Input in the first I bit positions of A_1 's VAS
- End of computation:
 - Output tape: sequence of L addresses: b₁, ..., b_L
 - Output itself in VAS: $o = m_{A_1}[b_1] \dots m_{A_1}[b_L]$