
Trust Model (D2.1/D3.1)

Thomas Herlea

Katholieke Universiteit Leuven
Department ESAT/SCD-COSIC

RE-TRUST 5th Quarterly Meeting
December 2007, Leuven



Trust Model (D2.1/D3.1)

Informal Trust Model

Outline

1 Informal Trust Model
Assets
Trusted Elements
Attacker Model

2 Formalization Using Traces
Description
Goals and Traces
Attacks and Traces
Protection and Traces
Trusted Server and Traces
Goals Revisited

3 Conclusion

2 / 27



Trust Model (D2.1/D3.1)

Informal Trust Model

Assets

Assets

impossible to enumerate

depend on the application in question

are among its business goals

limit the attacks we care about

3 / 27



Trust Model (D2.1/D3.1)

Informal Trust Model

Assets

Business Goals

still too varied

not trivial to express

but original program satisfies them

assets == properties of execution?

and obfuscation? CED/CEF?

consider properties of transformed programs, too

4 / 27



Trust Model (D2.1/D3.1)

Informal Trust Model

Assets

Properties of Execution

correctness

sequentiality

completeness

limitedness

timeliness

execution cardinality

. . .

5 / 27



Trust Model (D2.1/D3.1)

Informal Trust Model

Assets

Secondary Assets

adding defences adds assets

primary assets ⇐ original program

secondary assets ⇐ extra protection code

program confidentiality
crypto key confidentiality
protection code interlocking
dependence on trusted server

6 / 27



Trust Model (D2.1/D3.1)

Informal Trust Model

Trusted Elements

Trusted Elements

the trusted server

cryptographic primitives

trusted client hardware

equipment manufacturers

certification authorities

network access providers

. . .

7 / 27



Trust Model (D2.1/D3.1)

Informal Trust Model

Attacker Model

Attacker Model

goals

capabilities

limitations

8 / 27



Trust Model (D2.1/D3.1)

Informal Trust Model

Attacker Model

Attacker Goals

roughly: “break business goals”

other goals not of interest

refusal to execute == attack?

typically: “break some business goals, preserve some business
goals”

9 / 27



Trust Model (D2.1/D3.1)

Informal Trust Model

Attacker Model

Attacker Capabilities

complete control over the untrusted execution environment

mounting environmental attacks

using system libraries, I/O, networking, virtualisation, . . .

mounting static attacks

using disassemblers, decompilers, flipping bits, changing
instructions, constants, . . .

mounting dynamic attacks

using stepping, conditional breakpoints, changing variables and
control flow, . . .

10 / 27



Trust Model (D2.1/D3.1)

Informal Trust Model

Attacker Model

Attacker Limitations

no tampering with the trusted entities

probabilistic polynomial time algorithm (security parameter)

more radical tampering is more expensive

subject to limits derived from physical laws (timing)

11 / 27



Trust Model (D2.1/D3.1)

Formalization Using Traces

Outline

1 Informal Trust Model
Assets
Trusted Elements
Attacker Model

2 Formalization Using Traces
Description
Goals and Traces
Attacks and Traces
Protection and Traces
Trusted Server and Traces
Goals Revisited

3 Conclusion

12 / 27



Trust Model (D2.1/D3.1)

Formalization Using Traces

Description

Strategy

We seek a formal framework that supports a unified view of:

business goals

attacks

distributed execution

trust properties

and supports reasoning about them.

13 / 27



Trust Model (D2.1/D3.1)

Formalization Using Traces

Description

Code Integrity?

Good:

straightforward capturing of business goals

straightforward checking (in principle)

...but not good enough:

does not “see” environmental attacks

may complain about harmless changes

14 / 27



Trust Model (D2.1/D3.1)

Formalization Using Traces

Description

What a Trace Is

low level description of one program execution

sequence of elementary computations

both operators and operand values

timestamped elements, for reassembling distributed traces

inspired by theory of Abstract Interpretation

t ∈ T ,T = {elementary computation, timestamp}∗

15 / 27



Trust Model (D2.1/D3.1)

Formalization Using Traces

Description

Attitude to Traces

seem a promising candidate

effective tool
very fine-grained
good for theory

still have to prove themselves

possibly inefficient tool
not directly accessible to the defender
unproven in practice

we have not yet decided on the limits

16 / 27



Trust Model (D2.1/D3.1)

Formalization Using Traces

Goals and Traces

Goals and Traces

all traces of a correct execution satisfy the defender’s goals

possibly other traces, too

other traces do not

model defender’s goal as a predicate

D : T → {0, 1}
t 1 if goals are met

0 else.

by definition, attacker’s goal is A = D

17 / 27



Trust Model (D2.1/D3.1)

Formalization Using Traces

Goals and Traces

Reasoning with Goals

Let’s express a conjunction of business goals.

in English: “satisfy all subgoals Di”

with predicates: D = (D1 ∧ D2 ∧ · · · ∧ Dn) =
∧

i Di

and the right of the client not to execute the program at all?

retry in English: “satisfy all or nothing”

retry with predicates:

D = (D1∧D2∧· · ·∧Dn)∨D1 ∨ D2 ∨ · · · ∨ Dn =
∧
i

Di ∨
∨
i

Di ,

attacker: A = D =
∧

i Di ∨
∨

i Di =
∨

i Di ∧
∨

i Di

paradox: A ⇒
∨

i Di

18 / 27



Trust Model (D2.1/D3.1)

Formalization Using Traces

Attacks and Traces

Execution and Traces

In Re-Trust traces depend on:

the program’s binary P

the execution context C

the inputs from the trusted server Is

the inputs from the untrusted client Ic

An “execution engine” generates the trace:

E (P,C , Is , Ic) = t

19 / 27



Trust Model (D2.1/D3.1)

Formalization Using Traces

Attacks and Traces

Attacks and Traces

The actions of an attacker will change the trace:

skipping instructions cause missing trace elements

inserting instructions cause extraneous elements

out of order execution causes out of order sequences of
elements

changing values in memory causes changed trace elements

running a debugger is like inserting instructions

20 / 27



Trust Model (D2.1/D3.1)

Formalization Using Traces

Attacks and Traces

Tampering Formalism (tentative)

Given that D(E (P,C , Is , Ic)) = 1, successful tampering means that
the attacker obtains A(E (P ′,C ′, I ′s , I

′
c)) = 1 by producing:

P ′ = P + δ - a tampered binary

C ′ - an instrumented context

I ′s - a way to alter communication with the trusted server

I ′c - a subset of the client inputs

The attack algorithm (“simulation”) is denoted

S(P,C , k) = (δ,C ′, I ′s , I
′
c)

21 / 27



Trust Model (D2.1/D3.1)

Formalization Using Traces

Protection and Traces

Protection Formalism (tentative)

Re-Trust is looking for

θ (θ(P) is program P, protected)

and the corresponding server input Is

such that S succeeds with negligible probability:

Pr [S(θ(P),C , k) = (δ,C ′, I ′s , I
′
c)|A(E (θ(P)+δ,C ′, I ′s , I

′
c)) = 1] ≤ neg(k).

If θ were able to ensure this alone, execution could be performed
offline. If it existed, perfect obfuscation could be θ. In practice, it
seems more feasible to use a reactive approach using Is .

22 / 27



Trust Model (D2.1/D3.1)

Formalization Using Traces

Protection and Traces

Reactive Protection (tentative)

At every step, the defender would like the trace up to now:

to still allow D to be satisfied in the future (trace is still
“D-satisfactory”) and

not to allow A to be satisfied any more in the future (the
trace is already“A-unsatisfactory”).

As this might not be possible, the defender would like at all times
to have a “fragile trace”, i.e. a trace that can turn into an
“A-unsatisfactory” trace in one step:

automatically, triggered by the slightest tampering or

under the defender’s control, by withholding the next benign
piece of server input (which should be hard to guess)

23 / 27



Trust Model (D2.1/D3.1)

Formalization Using Traces

Trusted Server and Traces

Evidence and Verdicts

Evidence would have to:

be produced by the untrusted client

in an unforgeable way

return one “tag” based on the current trace

and allow the existence of a validation function.

A verdict function would have to:

work on the sequence of tags returned during an execution

return 1 only if the tag sequence corresponds to a
“D-satisfactory” trace

return 0 only if the tag sequence corresponds to a
“D-unsatisfactory” trace

24 / 27



Trust Model (D2.1/D3.1)

Formalization Using Traces

Goals Revisited

Goals Revisited

Security requirements examples

the client should not be able to forge a trace based on other
trace it has seen

the client should not be able to inject specific additional
instructions into a trace

the server should be able to detect that tags from a client
come from traces it was authorized to produce

ensure atomicity of transactions

Performance requirements examples

computing the verdict is cheaper than executing the original
program on the server

computing the verdict plus executing the protected program
on the client should not be much more expensive than
executing the unprotected program on the client

25 / 27



Trust Model (D2.1/D3.1)

Conclusion

Outline

1 Informal Trust Model
Assets
Trusted Elements
Attacker Model

2 Formalization Using Traces
Description
Goals and Traces
Attacks and Traces
Protection and Traces
Trusted Server and Traces
Goals Revisited

3 Conclusion

26 / 27



Trust Model (D2.1/D3.1)

Conclusion

Conclusion

Traces are powerful tool

Traces are not well-defined on multi-threaded platforms

Traces can require complex predicates for simple business
goals

Traces can not express the integrity of some static properties

We believe they are a useful evaluation tool

27 / 27


	Informal Trust Model
	Assets
	Trusted Elements
	Attacker Model

	Formalization Using Traces
	Description 
	Goals and Traces
	Attacks and Traces
	Protection and Traces
	Trusted Server and Traces
	Goals Revisited

	Conclusion

