
Computing in the Encrypted Domain

Brecht Wyseur, Mina Deng, Thomas Herlea

Katholieke Universiteit Leuven
Department ESAT/SCD-COSIC

RE-TRUST 5th Quarterly Meeting
December 2007, Leuven

Computing in the Encrypted Domain

Outline

1 RE-TRUST
Motivation

2 Homomorphic crypto schemes

3 DCRA-cryptosystems
Goldwasser-Micali
Benaloh
Naccache-Stern
Okamoto-Uchiyama
Paillier
Damg̊ard-Jurik

4 New directions
Pairings
Evaluating 2-DNF formulas on Ciphertexts

5 Conclusion

Computing in the Encrypted Domain

RE-TRUST

Motivation

Motivation

RE-TRUST WP3 Task 3.3 “Encrypted code execution”

Computing with Encrypted Functions (CEF)
Computing with Encrypted Data (CED)

Partners: Gemalto, K.U.Leuven

M9-M33 (June 2007 - June 2009)

Computing in the Encrypted Domain

RE-TRUST

Motivation

CED/CEF

Computing with Encrypted Functions

F (x1, . . . , xn)

F E

E(F)

x1, . . . , xn
E(F)

D E(F)(x1, . . . , xn)

Computing with Encrypted Data

E(F)(x1, . . . , xn)

G

D

E(x1), E(x2), . . . , E(xn)
E(xi)

Ex1, x2, . . . , xn

F (x1, . . . , xn)

Computing in the Encrypted Domain

Homomorphic crypto schemes

Computing with Encrypted Data

Secure Function Evaluation
Yao’s Garbled Circuits, cryptocomputing, . . .

Homomorphic cryptosystems

Homomorphic cryptosystems

An encryption scheme Ek is said to be homomorphic if for any k, it
satisfies the following property:

∀m1, m2 ∈M : E (m1

⊗
m2) = E (m1)

⊕
E (m2)

for some operators
⊗

in M and
⊕

in C.

Computing in the Encrypted Domain

Homomorphic crypto schemes

Quadratic Residue

Quadratic residue

An element x is said to be a quadratic residue module n if

∃y ` x ≡ y2 mod n

The Jacobi Symbol captures the quadratic residuosity:

(x

n

)
=

1 if ∃y ` x ≡ y2 mod n
0 if n|x
−1 else

and can easily be computed given the factorisation of n.

(
x∏
i pi

)
=

∏
i

(
x
pi

) (
a
p

)
≡ a(p−1)/2 mod p

Computing in the Encrypted Domain

DCRA-cryptosystems

Decisional Composite Residuosity Assumption (DCRA)

x is a n’th residue in G, if ∃y ` x ≡ yn mod ord(G).

Decisional Composite Residuosity Assumption (DCRA)

Let A be a probabilistic polynomial time algorithm. Assume A
knows the order of G, which is k bits. A gets input x and outputs
bit b = 1 if x is an n’th residue in G, b = 0 otherwise. Let
p(A, k, x) be the probability that b = 1. Then

|p(A, k, x)− p(A, k, xn)| < neg(k)

Deciding n’th residuosity is believed to be intractable.

Computing in the Encrypted Domain

DCRA-cryptosystems

QR and QNR computation

Some more properties

Inversion: If a is a QR mod n, then (−1) · a mod n is a
QNR mod n (and vice versa).

Multiplication mod n:
a b a · b mod n

QR QR QR
QR QNR QNR

QNR QR QNR
QNR QNR QR

a b a⊕ b

0 0 0
0 1 1
1 0 1
1 1 0

Observe that
QR/QNR, · ∼= Z2,+

Computing in the Encrypted Domain

DCRA-cryptosystems

Goldwasser-Micali

G̃
H
∼= G

0.H

1.H

G = {0, 1}
Er

Figure: Goldwasser-Micali homomorphic mapping

Each element of G is mapped onto a random element of a coset of

the factor group G̃
H , with H ⊂ G̃ all quadratic residues.

Remark: We need to deploy a probabilistic encryption scheme.

Computing in the Encrypted Domain

DCRA-cryptosystems

Goldwasser-Micali

Goldwasser-Micali

{
b = 0 → c QR
b = 1 → c QNR

Prerequisites:

g a quadratic non-residue ∈ Z∗n.
n = pq, where p and q are prime.

Encryption: Let b be the bit to be encrypted. Choose r ←R Z∗n a
random element.

c = Er (b) = gbr2 mod n

Decryption:
Compute the Jacobi symbol of the ciphertext with respect to n.
Hard when factorisation of n = pq is unknown. Easy when p, q are
known.

Computing in the Encrypted Domain

DCRA-cryptosystems

Goldwasser-Micali

Benaloh

. u − 1

gH

g2H
H

ErG = {0, . . . , u − 1}

Zn

. 1

. 0

. 2

gu−1H

Figure: Benaloh homomorphic mapping

Computing in the Encrypted Domain

DCRA-cryptosystems

Benaloh

Benaloh

Prerequisites:

Choose a blocksize u, and two large primes p and q, such that
u|(p − 1), and gcd(q − 1, u) = 1. Set n = pq.

Choose g ∈ (Z
nZ

)∗
such that y (p−1)(q−1)/u 6= 1 mod n.

Public key is (g , n), private key is the two primes (p, q).

Encryption: m ∈ Z
uZ message. r ←R

(Z
nZ

)∗
.

c = Er (m) = gmru mod n

“Decryption”:

cφ(n)/u ≡ 1 mod n ⇔ m ≡ 0 mod u

Computing in the Encrypted Domain

DCRA-cryptosystems

Benaloh

Benaloh

Decryption:

E (m)E (i) = E (m + i mod u) = E (0 mod u), Hence

c iφ(n)/u ≡ 1 mod n ⇔ m ≡ −i mod u

Precompute TM = gMφ(n)/u mod n.

∀z ∈ Er (M) : z(p−1)(q−1)/u ≡ TM mod n

Baby step-giant step method: Precompute TM for each
M ≈ k

√
u, with k = 0..

√
u.

c iφ(n)/u = TM ⇔ m ≡ M − i mod u

Computing in the Encrypted Domain

DCRA-cryptosystems

Naccache-Stern

Naccache-Stern

Prerequisites:

Similar to Benaloh

u is B-smooth and square-free (i.e., u =
∏

i pi , with pi < B
and pi 6= pj for i 6= j).

Encryption:
c = Er (m) = gmru mod n

Decryption: For each pi : compare cφ(n)/pi mod n with g iφ(n)/pi

mod n. Find m using the Chinese Remainder Theorem for m ≡ i
mod pi .

Computing in the Encrypted Domain

DCRA-cryptosystems

Naccache-Stern

Okamoto-Uchiyama

(
Z

p2qZ

)∗

H

gH

g2H
H

EG ∼= Zp

. 1

. 0

. 2

Figure: Damg̊ard-Jurik homomorphic group mapping

(
Z

p2qZ

)∗ ∼=
(
Z

p2Z

)∗
×

(
Z
qZ

)∗
has a unique subgroup of order

p ⇒
(

Z
p2qZ

)∗ ∼= Zp × H.

Computing in the Encrypted Domain

DCRA-cryptosystems

Okamoto-Uchiyama

Okamoto-Uchiyama

Prerequisites:

Generate large primes p, q, and set n = p2q.

Choose g ∈ (ZnZ)∗ such that g has order (p − 1)p in the
subgroup (Z

p2Z)∗.
Let h = gn mod n.

Encryption: Select r ∈ Z
nZ at random. m ∈ Zp.

c = gmhr mod n

Decryption:
Define L(x) = x−1

p on G = {x : x ≡ 1 mod p}. Then

m =
L(cp−1 mod p2)

L(gp−1 mod p2)
mod p

Computing in the Encrypted Domain

DCRA-cryptosystems

Paillier

Paillier

Prerequisites:

Choose two large primes p, q.

Compute n = pq and λ = lcm(p − 1, q − 1).

Select a random g ∈ Z∗n2 , such that µ = (L(gλ mod n2))−1

mod n exists, with L(x) = x−1
p .

The public key is (n, g), the private key λ.

Encryption: Let m ∈ Zn be the message to be encrypted. Select
r ∈ Z∗n at random.

c = gmrn mod n2

Decryption:

m =
L(cλ mod n2)

L(gλ mod n2)
mod n

Computing in the Encrypted Domain

DCRA-cryptosystems

Paillier

Paillier

. 2

gH

g2H
H

EG ∼= Zn

Z∗
n2
∼= Zn × Zn

. 1

. 0

Figure: Paillier homomorphic group mapping

Z∗n2
∼= G× H, with H = {x ∈ Zn2 | xλ ≡ 1 mod n} ∼= Zn.

Computing in the Encrypted Domain

DCRA-cryptosystems

Damg̊ard-Jurik

Damg̊ard-Jurik

Generalisation of Paillier’s cryptosystem.
Z∗ns+1

∼= G × H, with G a cyclic group of order ns , and H ∼= Z∗n.

(1 + n)H

H

ErG

Z
ns+1 ∼= G × H

. 1

. 0

. 2

(1 + n)2H

Figure: Damg̊ard-Jurik homomorphic group mapping

Lemma

For any s < p, q: (1 + n) has order nS in Zns+1 .

Computing in the Encrypted Domain

DCRA-cryptosystems

Damg̊ard-Jurik

Damg̊ard-Jurik

Prerequisites:

Choose primes p and q, compute n = pq,
λ = lcm(p − 1, q − 1).

Choose g ∈ Z∗ns+1 such that g = (1 + n)jx mod ns+1, with
gcd(j , n) = 1, and x ∈ H.

Choose d such that d mod n ∈ Z∗n and d ≡ 0 mod λ.

The public key is (n, g), the private key d .

Encryption: m ∈ Zns , and r ←R Z∗ns+1 .

c = gmrns
mod ns+1

Decryption:

cd = (1 + n)jmd mod ns
mod ns+1

Computing in the Encrypted Domain

DCRA-cryptosystems

Damg̊ard-Jurik

Damg̊ard-Jurik

Decryption:

cd = (1 + n)jmd mod ns
mod ns+1 (1)

Let L(a) = a−1
n , then

L((1 + n)i = mod ns+1 = (i +

(
i

2

)
n + . . .

(
i

s

)
ns−1) mod ns

We can compute ij ≡ i mod nj using

L((1 + n)i = mod nj+1 = (i +

(
i

2

)
n + . . .

(
i

j

)
nj−1) mod nj

Hence we are able to obtain jmd from (1), and the message
m = (jmd) · (jd)−1 mod ns .

Computing in the Encrypted Domain

DCRA-cryptosystems

Damg̊ard-Jurik

DCRA homomorphic crypto schemes

Er1(m1)Er2(m2) mod a ≡ Er (m1 + m2 mod b)

a b

Goldwasser-Micali n 1
Benaloh n r

Naccache-Stern n r
Okamoto-Uchiyama p2q p

Paillier n2 n
Damg̊ard-Jurik ns+1 ns

Where n = pq.
Bandwith expansion: a

b .

Computing in the Encrypted Domain

New directions

Pairings

Pairings

A pairing is a function

e : G1 ×G2 → G3.

All pairings that we consider (as a primitive for homomorphic
encryption schemes), satisfy the following additional properties:
Bilinearity For all P, P ′ ∈ G1, and all Q, Q ′ ∈ G2 we have

e(P+P ′,Q) = e(P, Q)e(P ′, Q), and e(P, Q+Q ′) = e(P, Q)e(P, Q ′)

Non-degeneracy

For all P ∈ G1, with P 6= 0, there is some Q ∈ G2 such that
e(P, Q) 6= 1.

For all Q ∈ G2, with Q 6= 0, there is some P ∈ G1 such that
e(P, Q) 6= 1.

Computing in the Encrypted Domain

New directions

Evaluating 2-DNF formulas on Ciphertexts

Deploy a Pairing between homomorphic groups

G1 ∼= Zn ⊂ E(Fp)

Er

e(., .)

H

g.H
H1

g1.H1

G3 ∼= Zn ⊂ F∗p2

. 1

. 0

G = {0, . . . , T}

Figure: Paired homomorphic groups

Computing in the Encrypted Domain

New directions

Evaluating 2-DNF formulas on Ciphertexts

Boneh’s Construction

Construction:

Let n = q1q2 ∈ Z, with q1, q2 two random τ -bit primes.

Find the smallest positive integer l ∈ Z such that p = ln − 1
and p = 2 mod 3.

Construct the group of points on the elliptic curve
y2 = x3 + 1 over Fp. Hence #E (Fp) = p + 1 = ln. Define G1

as a subgroup of order n generated by g .

Construct a modified Weil pairing on the curve
e : G1 ×G1 → G3, with G3 a subgroup of F∗p2 of order n,

with generator e(g , g).

Decision problem: Given (n,G1,G3, e), it is hard to decide if
x ∈ G1 is an element of Zq1 without knowing the factorization of n.

Computing in the Encrypted Domain

New directions

Evaluating 2-DNF formulas on Ciphertexts

Crypto system

Prerequisites:

g , u ←R G1

h = uq2 , random generator of subgroup of G1 of order q1.

Public key (n,G1,G2, e, g , h), private key q1.

Encryption: m ∈ {0, . . . ,T} with T < q2, r ←R Zn.

c = gmhr ∈ G1

Decryption:
cq1 = (gq1)m

Let ĝ = gq1 . To recover m, compute discrete log of cq1 base ĝ.

Computing in the Encrypted Domain

New directions

Evaluating 2-DNF formulas on Ciphertexts

Homomorphic properties

Additive For any c1, c2 ∈ G1, encryptions of m1, m2 ∈ {0, . . . , T},
with r ∈ Zn:

c = c1c2h
r ↔ m1 + m2 mod n

Multiplicative

c = e(c1, c2)h
r
1 = gm1m2

1 hr̃
1 ∈ G3

with g1 = e(g , g), h1 = e(g , h), and
r̃ = m1r2 + m2r1 + αq2r1r2 + r , where h = gαq2 for some
(unknown) α ∈ Z.

Computing in the Encrypted Domain

New directions

Evaluating 2-DNF formulas on Ciphertexts

2-DNF evaluation conclusion

“Infinite” amount of additions in the encrypted domain

Once a multiplication
⇒ Quadratic polynomials F (x1, . . . , xu) can be evaluated in
the encrypted domain.

However, knowledge of a certain polynomial size interval
needed for decryption of the result.

Computing in the Encrypted Domain

Conclusion

Conclusion and future work

Task started with state-of-the-art study of a family of
Homomorphic Encryption Schemes (DCRA-based), and the
theory of Secure Function Evaluation (SFE).

We only discussed about computation on encrypted data
(CED), not about computing with encrypted functions (CEF).
→ Operations are not obfuscated.

Practical applicability for the benefit of the project needs to
be studied further.

