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Motivation

m RE-TRUST WP3 Task 3.3 “Encrypted code execution”

m Computing with Encrypted Functions (CEF)
m Computing with Encrypted Data (CED)

m Partners: Gemalto, K.U.Leuven
m M9-M33 (June 2007 - June 2009)
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CED/CEF

Computing with Encrypted Functions

E(F)

Computing with Encrypted Data

X1, X2y« ++y Xp ’E} Elx) E(x1), E(x2), - - - E(xn)

F(x1,...,%n)

L’E E(F)(xt, .- -, xn)
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Computing with Encrypted Data

m Secure Function Evaluation
Yao's Garbled Circuits, cryptocomputing, ...

m Homomorphic cryptosystems

Homomorphic cryptosystems
An encryption scheme Ej is said to be homomorphic if for any k, it
satisfies the following property:

Vmy,my e M : E(m ®m2) = E(ml)@ E(my)

for some operators @) in M and & in C.
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L Homomorphic crypto schemes

Quadratic Residue

Quadratic residue

An element x is said to be a quadratic residue module n if

dykx=y?> modn

The Jacobi Symbol captures the quadratic residuosity:
1 ifdyFx=y?> modn
X .
<7> = 0 ifnlx

—1 else

and can easily be computed given the factorisation of n.

() =T() () =se mets o
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Decisional Composite Residuosity Assumption (DCRA)

x is a n'th residue in G, if 3y - x = y" mod ord(G).

Decisional Composite Residuosity Assumption (DCRA)

Let A be a probabilistic polynomial time algorithm. Assume A
knows the order of G, which is k bits. A gets input x and outputs
bit b=1 if x is an n'th residue in G, b = 0 otherwise. Let

p(A, k, x) be the probability that b = 1. Then

IP(A, k,x) — p(A, k,x")| < neg(k)

Deciding n'th residuosity is believed to be intractable.
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QR and QNR computation

Some more properties

m Inversion: If aisa QR mod n, then (—1)-a mod nis a
QNR mod n (and vice versa).

m Multiplication mod n:

a b a-b modn alb|adb
QR QR QR 010 0
QR | QNR QNR 0|1 1
QNR | QR QNR 110 1
QNR | QNR QR 1)1 0

Observe that
QR/QNR,- = Zy, +
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Goldwasser-Micali

Figure: Goldwasser-Micali homomorphic mapping

Each element of G is mapped onto a random element of a coset of
the factor group %, with H C G all quadratic residues.

Remark: We need to deploy a probabilistic encryption scheme.
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Goldwasser-Micali

{ b=0 — cQR
b=1 — cQNR
Prerequisites:

® g a quadratic non-residue € Z.

m n = pq, where p and g are prime.

Encryption: Let b be the bit to be encrypted. Choose r R Z* a
random element.

c=&(b) =g’ modn

Decryption:

Compute the Jacobi symbol of the ciphertext with respect to n.

Hard when factorisation of n = pq is unknown. Easy when p, g IBESIC
known. ’
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Benaloh

Figure: Benaloh homomorphic mapping
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Benaloh

Prerequisites:

m Choose a blocksize u, and two large primes p and g, such that
ul(p—1), and ged(q — 1,u) = 1. Set n = pq.
m Choose g € (%)* such that y(P=1(@=1)/u £ 1 mod n.
m Public key is (g, n), private key is the two primes (p, q).
Encryption: m € Z message. r R (Z)",
c=&(m)=g"r" modn
“Decryption”:

M/ =1 modnem=0 mod u
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Benaloh

Decryption:
m E(m)E(i)= E(m+i mod u) = E(0 mod u), Hence

cM/M=1 modne m=—i modu
m Precompute Ty = gM("/v mod n.
Vz € E/(M): 2P~ D/v = 7)) mod n

m Baby step-giant step method: Precompute Ty, for each
M = k\/u, with k = 0..\/u.

oM/ = Ty e m=M—i modu
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Naccache-Stern

Prerequisites:
m Similar to Benaloh
m u is B-smooth and square-free (i.e., u = [[; pi, with p; < B
and p; # p; for i # j).
Encryption:
c=&(m)=g"r" modn

Decryption: For each p;: compare c?("/Pi mod n with g/¢("/pi
mod n. Find m using the Chinese Remainder Theorem for m=
mod Pi-
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Okamoto-Uchiyama

Figure: Damgérd-Jurik homomorphic group mapping

* * *
(%) = (ngZ) X (;%) has a unique subgroup of order

A o~
p:><W> = Zp X H.
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Okamoto-Uchiyama

Prerequisites:
m Generate large primes p, g, and set n = p?q.
m Choose g € (-2)* such that g has order (p — 1)p in the
subgroup (,ﬁ%)*'
m Let h=g" mod n.
Encryption: Select r € -2 at random. m € Z,,.

c=g"h" modn

Decryption:
Define L(x) = XTTI on G={x:x=1 mod p}. Then

L(cP~! mod p?) mod p
L(gP~t mod p?) 5SIC

m =
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Paillier

Prerequisites:
m Choose two large primes p, g.
m Compute n=pqg and A\ =lem(p—1,q —1).
m Select a random g € Z7,, such that p = (L(g» mod n?))7!
mod n exists, with L(x) = *>1.
m The public key is (n, g), the private key A.

Encryption: Let m € Z, be the message to be encrypted. Select

r € Zj, at random.

c=gm" mod n?

Decryption:
L(c* mod n?)

_ Ko modm) g
m L(g* mod n?) moa n
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Paillier

Figure: Paillier homomorphic group mapping

Zy, = G x H, with H={x€Zp|x*=1 mod n} = Z,.
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Damgard-Jurik

Generalisation of Paillier's cryptosystem.
Zy.1 = G x H, with G a cyclic group of order n°, and H = Z,.

Zost1 =2 GXH

: /

Figure: Damgard-Jurik homomorphic group mapping

Lemma
For any s < p,q: (1 + n) has order n® in Z 1. SIC
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Damgard-Jurik

Prerequisites:
m Choose primes p and g, compute n = pq,
A=lem(p—1,q—1).
m Choose g € Z*,., such that g = (1 + nYx mod n**!, with
ged(j,n) =1, and x € H.
m Choose d such that d mod n€ Z} and d =0 mod A.
m The public key is (n, g), the private key d.
Encryption: m € Z,s, and r <~ L

m  n® 1

c=g"r" mod n*"
Decryption:

Cd — (1 + n)jmd mod n® mod ns+1 5SIC
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Damgard-Jurik

Decryption:
Cd — (1 + n)jmd mod n® mod ns+1 (1)

Let L(a) = 21, then

L((1+n) = wmodntt=(i+ <;> n+... <I) n*1) mod n®
s

We can compute ij =i mod n/ using

L((1+n)= mod ™t =(i+ (é) n+... (J’) A1) mod

Hence we are able to obtain jmd from (1), and the message
m = (jmd) - (jd)™* mod n°. oSIC
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DCRA homomorphic crypto schemes

En(m)&r,(my) mod a= & (my+ my mod b)

a b

Goldwasser-Micali n 1
Benaloh n r
Naccache-Stern n r
Okamoto-Uchiyama  p?q p
Paillier n”? n

[

Damgard-Jurik nst1 n

Where n = pq.

Bandwith expansion: 2

E .
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Pairings

A pairing is a function
e Gl X Gz — G3.

All pairings that we consider (as a primitive for homomorphic
encryption schemes), satisfy the following additional properties:
Bilinearity For all P, P’ € G1, and all Q, Q" € G5 we have

e(P+P', Q) = e(P,Q)e(P', Q), and e(P, Q+Q) = e(P, Q)e(P, Q')

Non-degeneracy
m For all P € Gy, with P # 0, there is some Q € Go such that
e(P,Q) # 1.

m For all Q € Gy, with Q # 0, there is some P € G such that
e(P,Q) # 1. oSIC
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Deploy a Pairing between homomorphic groups

Gy = Zp C E(Fp)

Figure: Paired homomorphic groups
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Boneh's Construction

Construction:
m Let n = qi1q2 € Z, with g1, g> two random 7-bit primes.
m Find the smallest positive integer | € Z such that p=/n—1
and p =2 mod 3.
m Construct the group of points on the elliptic curve
y? =x3+1 over Fp. Hence #E(F,) = p+ 1 = In. Define Gy
as a subgroup of order n generated by g.
m Construct a modified Weil pairing on the curve
e: Gi1 x G1 — Gs, with G3 a subgroup of IF;';Q of order n,
with generator e(g, g).
Decision problem: Given (n, G1,Gs, e), it is hard to decide if
x € Gy is an element of Zg, without knowing the factorization of n.

(GSIC
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LEvaluating 2-DNF formulas on Ciphertexts

Crypto system

Prerequisites:
mg,u—RG;
m h = u%, random generator of subgroup of Gy of order q;.
m Public key (n,G1,Ga, e, g, h), private key g.
Encryption: m€ {0,..., T} with T < qo, r <R Z,,.

c=g"h"e G

Decryption:
CCI1 — (gCI1)m

Let g = g9. To recover m, compute discrete log of ¢ base §.
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LEvaluating 2-DNF formulas on Ciphertexts

Homomorphic properties

Additive For any c1, c; € Gy, encryptions of my,my € {0,..., T},
with r € Zp:
c=cch" < m +my modn

Multiplicative
c=e(c,)h] = glmlmZhg € Gs

with g1 = e(g,g), h1 = e(g, h), and
¥F=mirn + mari + aqgarirn + r, where h = g*% for some
(unknown) « € Z.
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2-DNF evaluation conclusion

m “Infinite” amount of additions in the encrypted domain

m Once a multiplication
= Quadratic polynomials F(xi,...,x,) can be evaluated in
the encrypted domain.

m However, knowledge of a certain polynomial size interval
needed for decryption of the result.
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Conclusion and future work

m Task started with state-of-the-art study of a family of
Homomorphic Encryption Schemes (DCRA-based), and the
theory of Secure Function Evaluation (SFE).

m We only discussed about computation on encrypted data
(CED), not about computing with encrypted functions (CEF).
— Operations are not obfuscated.

m Practical applicability for the benefit of the project needs to
be studied further.



