
REMOTE ENTRUSTING BY
REMOTE CONTROL FLOW

MONITORING
Stefano Di Carlo

Politecnico di Torino

RE-TRUST 6th quaternary meeting
VILLACH (AUSTRIA)

12 March 2008

START

Input N

Input D

D<>0

R=N/D

Output

D

Output

ERROR

Input D

END

T F

GOAL

Using remote control
flow monitoring to
verify software code
integrity.

N:10

D:10

R:1

START

Input N

Input D

D<>0

R=N+D

Output

D

Output

ERROR

Input D

END

T F

GOAL

Target attacks:

Malicious
modifications of
instructions
opcodes

Malicious
modifications of the
program flow

N:10

D:0

R:10

START

Input N

Input D

D<>0

R=N/D

Output

D

Output

ERROR

Input D

END

T F

Check

Check Check

CONTROL FLOW CHECKING

Drawbacks:

Local checking only

Easy to bypass

REMOTE CONTROL FLOW
CHECKING

Split the program integrity verification among the
untrusted and the trusted node:

Program execution performed on the untrusted
node

Control flow validation performed on the trusted
node

REMOTE CONTROL FLOW
CHECKING

Basic flow:

The target application collects information (traces)
about executed instructions

Traces are transmitted from the untrusted node to
the trusted node

The trusted node validates the control flow of the
application

Any violation is detected as an attack

REMOTE CONTROL FLOW
CHECKING

Traces represented by checksums evaluated over the
basic blocks of the application

Drawbacks:

Cloning attack

Solution:

Self modifying code

REMOTE CONTROL FLOW
CHECKING

Self modifying code:

The program contains a
Modifying Instruction Table (MIT)

An instruction is randomly selected to replace
another instruction of the actual application code

Random generation algorithm and initial seed shared with the trusted
server

1 INC eax

2 MOV edx, 1982

3 ADD eax, 1

4 JMP next_instr

REMOTE CONTROL FLOW
CHECKING

The trusted node is in charge of:

Monitoring the flow of instructions received from
the untrusted node (correct sequence of basic
blocks)

Validating the checksum of each basic block
(correct instructions opcode)

REMOTE CONTROL FLOW
CHECKING

Valid control flows represented through a Regular
Expression String (RES) on the trusted node

Each RES field represents a single basic block

RES FIELD

REMOTE CONTROL FLOW
CHECKING

Basic block nesting level

while(i != 10) { //LEVEL 1
 …
 if (i == J) { //LEVEL 2
 …
 }
}

REMOTE CONTROL FLOW
CHECKING

Basic block memory offset

while(i != 10) { //0x016
 …
 if (i == J) { //0x048
 …
 }
}

REMOTE CONTROL FLOW
CHECKING

| → Option among two basic blocks
→ The basic block is mandatory.
* → The basic block can be executed zero or more
times
+ → The basic block can be executed one or more
time
? → The basic block is optional

REMOTE CONTROL FLOW
CHECKING

Identifies a terminal basic block

REMOTE CONTROL FLOW
CHECKING

 States if the missing
notification of the basic block
execution is accepted or not

EXPERIMENTAL RESULTS

Remote anagrams searching

Dictionary

2

Dictionary

n

REQUEST (String , Dictionary)

Instruction trace

Instruction trace

Instruction trace

RESPONSE (List of anagrams)

E
L
A

B
O

R
A

T
IO

N

C
H

E
C

K
IN

G

Dictionary

1

Untrusted host
Trusted host

EXPERIMENTAL RESULTS

Execution time:

Original Program Control Flow Checking
(SHA1)

Control Flow Checking
(XOR)

0.015 sec 4.00 sec 0.125 sec

Memory usage:

Original Program Control Flow Checking
(SHA1)

0.0748MB 2.30MB

CONCLUSIONS

No conclusions yet

18

