RE-TRUST 6th quaternary meeting VILLACH (AUSTRIA) I2 March 2008

REMOTE ENTRUSTING BY REMOTE CONTROL FLOW MONITORING

Stefano Di Carlo Politecnico di Torino

different a fair and have started at the

 Using remote control flow monitoring to verify software code integrity.

• Target attacks:

- Malicious modifications of instructions opcodes
- Malicious modifications of the program flow

CONTROL FLOW CHECKING

Drawbacks:

- Local checking only
- Easy to bypass

- Split the program integrity verification among the untrusted and the trusted node:
 - Program execution performed on the untrusted node
 - Control flow validation performed on the trusted node

Basic flow:

- The target application collects information (traces) about executed instructions
- Traces are transmitted from the untrusted node to the trusted node
- The trusted node validates the control flow of the application
- Any violation is detected as an attack

- Traces represented by checksums evaluated over the basic blocks of the application
- Drawbacks:
 - Cloning attack
- Solution:
 - Self modifying code

- Self modifying code:
 - The program contains a Modifying Instruction Table (MIT)

I	INC eax
2	MOV edx, 1982
3	ADD eax, I
4	JMP next_instr

- An instruction is randomly selected to replace another instruction of the actual application code
 - Random generation algorithm and initial seed shared with the trusted server

- The trusted node is in charge of:
 - Monitoring the flow of instructions received from the untrusted node (correct sequence of basic blocks)
 - Validating the checksum of each basic block (correct instructions opcode)

 Valid control flows represented through a Regular Expression String (RES) on the trusted node

Each RES field represents a single basic block

Basic block memory offset

while(i != 10) { //0x016

if (i == J) { //<mark>0x048</mark>

LEVEL OFFSET RIP CKSM1 CKSM2 CKSMi CKSMn TO_END CIRC	LEVEL	OFFSET	RIP	CKSM1 (CKSM2	CKSMi	CKSMn	TO_END	CIRC
--	-------	--------	-----	---------	-------	-------	-------	--------	------

I → Option among two basic blocks
→ The basic block is mandatory.
* → The basic block can be executed zero or more times
+ → The basic block can be executed one or more time
? → The basic block is optional

LEVEL OFFSET RIP	CKSM1 CKSM2 CKSM	li CKSMn TO_END	CIRC
------------------	------------------	-----------------	------

States if the missing notification of the basic block execution is accepted or not

LEVEL	OFFSET	RIP	CKSM1	CKSM2	CKSMi	CKSMn	TO END	CIRC
	001.		01101111	oncome j.	01.0111			0

EXPERIMENTAL RESULTS

A Charles and the second of the state

Remote anagrams searching

EXPERIMENTAL RESULTS

And Black ANTEL POR

Execution time:

Original Program	Control Flow Checking (SHAI)	Control Flow Checking (XOR)
0.015 sec	4.00 sec	0.125 sec

Memory usage:

Original Program	Control Flow Checking (SHAI)
0.0748MB	2.30MB

CONCLUSIONS

Antel Man and Alle

No conclusions yet