RE-TRUST 6th quaternary meeting
VILLACH (AUSTRIA)
|2 March 2008

REMOTE ENTRUSTING BY
REMOTE CONTROL FLOW

MONITORING

Stefano Di Carlo
Politecnico di Torino

® Using remote control
flow monitoring to
verify software code
Integrity.

® Target attacks:

® Malicious
modifications of
Instructions
opcodes

®» Malicious
modifications of the
program flow

CONTROL FLOW CHECKING

® Drawbacks:

® Local checking only

® Easy to bypass

REMOTE CONTROL
S

® Split the program integrity verification among the
untrusted and the trusted node:

® Program execution performed on the untrusted
node

® Control flow validation performed on the trusted
node

REMOTE CONTROL
S

® Basic flow:

® The target application collects information (traces)
about executed instructions

® Traces are transmitted from the untrusted node to
the trusted node

® The trusted node validates the control flow of the
application

® Any violation is detected as an attack

REMOTE CONTROL
S

® Traces represented by checksums evaluated over the
basic blocks of the application

® Drawbacks:
» Cloning attack
» Solution:

® Self modifying code

REMOTE CONTROL
PR

INC eax
MOV edx, 1982
ADD eax, |

» Self modifying code:

® The program contains a JMP next_instr
Modifying Instruction Table (MIT)

® An instruction is randomly selected to replace
another instruction of the actual application code

® Random generation algorithm and initial seed shared with the trusted
server

REMOTE CONTROL
S

® The trusted node is in charge of:

® Monitoring the flow of instructions received from
the untrusted node (correct sequence of basic
blocks)

® Validating the checksum of each basic block
(correct instructions opcode)

REMOTE CONTROL
PR

® Valid control flows represented through a Regular
Expression String (RES) on the trusted node

® Each RES field represents a single basic block

OFFSET| RIP |CKSM1]CKSM2 |... CKSMi ... {CKSMn [TO_END [CIRC |

RES FIELD

REMOTE CONTROL
PR

Basic block nesting level
while(i = 10) { /LEVEL 1
if i==J){//LEVEL 2

3
}

OFFSET| RIP |CKSM1]CKSM2 |... CKSMi ... {CKSMn [TO_END [CIRC |

REMOTE CONTROL
PR

Basic block memory offset
while(i = 10) { /0x016
if (i ==J){//0x048

L
}

OFFSET| RIP |CKSM1,CKSM2 ;... CKSMi ...

| CKSMn

TO_END | CIRC |

P

| — Option among two basic blocks
— The basic block is mandatory.

* — The basic block can be executed zero or more
times

+ — The basic block can be executed one or more
time

? — The basic block is optional

OFFSET| RIP |CKSM1]CKSM2 |... CKSMi ... {CKSMn [TO_END [CIRC |

REMOTE CONTROL
PR

|dentifies a terminal basic block

OFFSET| RIP |CKSM1,CKSM2 ;... CKSMi ...

| CKSMn

TO_END | CIRC |

REMOTE CONTROL
SIS

States if the missing
notification of the basic block
execution is accepted or not

OFFSET| RIP |CKSM1,;CKSM2 ;... CKSMi ... CKSMn TO_ENDJ CIRC |

®» Remote anagrams searching

Untrusted host

Trusted host

Dicti
ic |<1>nary REQUEST (String , Dictionary)

Instruction trace

Dictionary
2

Instruction trace

ELABORATION

CHECKING

Dictionary
n

Instruction trace

RESPONSE (List of anagrams)

EXPERIM

* Execution time:

ENTAL RESULTS

Original Program

Control Flow Checking Control Flow Checking
(SHATI) (XOR)

0.015 sec

4.00 sec 0.125 sec

* Memory usage:

Original Program

Control Flow Checking
(SHALI)

0.0748MB

2.30MB

CONCLUSIONS

® No conclusions yet

