Slicing Obfuscations

Anirban Majumdar
University of Trento
Italy
anirban@disi.unitn.it

Obfuscation: A functionality-preserving and
secrecy-enhancing transformation

= We doubt there is a precise and efficiently computable measure of
the work required by a reasonably competent adversary to
discover a secret protected by obfuscation.

= \We treat obfuscation as a heuristic process, looking for
transformations which are difficult but not impossible to reverse
engineer.

= Thinking in terms of a virtual black-box an obfuscation function is
a failure if an adversary could learn something from an
examination of the obfuscated version of the program that cannot
be learned (in roughly the same amount of time) by merely
executing the program repeatedly.

A framework for obfuscation

= We restrict our attention to an imperative
language which contains assignments,

conditiona
= \We extenc

s, loops, and compositions.
a previous work on using

functional
Imperative

orograms and data refinement for
programs.

= Benefits: we can generalise previous
obfuscations, and we can also prove their

correctnes

S.

Attack model - Program Slicing

= A reverse engineering technique often used to aid
program comprehension.

= A slice consists of the program parts that potentially
affect the values computed at a particular point.

= We slice our unobfuscated program and use this
Information to create obfuscations that are targeted to
restrict the effectiveness of slicing.

= \We consider the nodes from the SDG that are left
behind after slicing — we call such nodes the orphans.

= Add In obfuscations that create dependencies
between the slicing variable and the variables

contained within the orphans. .

A Particular Example

As an example, consider
the program wc which
counts the number of
lines (nl), words (nw) and
characters (nc) in a file.

we() {
int c,nl =0,nw =0,nc=0,1in;
n = F;
while ((c = getchar())! = EOF) {
nc ++;
if (c==""|c \7?
n = F;
else if (in == F)
{in="T; nw++;}
if (c=="\n) nl ++; }
out(nl,nw,nc); }

A Particular Example

As an example, consider
the program wc which
counts the number of
lines (nl), words (nw) and
characters (nc) in a file.

The backwards slice
from nl.

we() {

int ¢c,nl =0,nw = 0,nc=0,1in;
in = F;
while ((¢c = getchar())! = EOF) {

ne —+-+;
if (c==""]lc=="\n"[c=="\t)
n = F
else if (in == F)
{in="T; nw++;}
if (c=="\n') nl ++; }
out(nl,nw,nc); }

A Particular Example

As an example, consider “U 1

int ¢c,nl =0,nw = 0,nc=0,1in;

the program wc which in = F;
counts the number of while ((c = getchar())! = EOF) {

: e+
lines (nl), Words_ (nw)_ and if (c=—' "l e=="\n' || c=="\#)
characters (nc) in a file. in = F,
else if (in == F)
. in=1; nw++;
The backwards slice - é;”:, ST +} }
fromnl ... out(nl, nw, nc);
()i}

Our goal iIs to include
these orphans in the
slice.

An Example Obfuscation

As an obfuscation, we
add a bogus predicate
(that is always false) to
create dependencies.

we-0bf1() {
int c,nl =0,nw =0,nc=0,1in;
n = F;
while ((c = getchar())! = EOF) {
nc +-+;
iF(c——' "l c=c/\n/ |l ¢ ==/ \#)
W C I e) € \b')
n = F;
else if (in == F)
{in="T; nw++;}
if (c=="\n) nl ++; }

out(nl,nw,nc); }

An Example Obfuscation

As an obfuscation, we
add a bogus predicate
(that is always false) to
create dependencies.

This predicate uses the
Invariant:

nc>nw A nc > nl

we-0bf1() {
int c,nl =0,nw =0,nc=0,n;
n = F
while ((c = getchar())! = EOF) {
ne +-+;
if (c ==/ ' || c=="\n' || c =="\¥)
n —
else if (in == F)
{in="T; nw++;}
if (c=="\n') nl +-+;

out(nl, nw, nc);

An Example Obfuscation

As an obfuscation, we
add a bogus predicate
(that is always false) to
create dependencies.

The backwards slice
from nl.

Now we’'ve Iincluded all
of the orphans in the
slice for nl.

we-obf1() {

int c,nl =0,nw =0,nc=0,in;

in = F;
while ((c = getchar())! = EOF) {

ne +—+;

iF (c =" /|| c ==/ \n' || c=='\¥)
n = F;

else if (in == F)
{in="T; nw++;}

if (c=="\n")nl++;

if (nl > nc) nw = nc+ nl;

else {if (nw > nc) nc =nw —nl;} }

out(nl,nw,nc); }

10

An Example Obfuscation

As an obfuscation, we
add a bogus predicate
(that is always false) to
create dependencies.

We have also included
the orphans of the slices
for the other two output
variables.

we-obf1() {

int c,nl =0,nw =0,nc=0,in;

in = F;
while ((c = getchar())! = EOF) {

ne +—+;

it (c—" ' Je=="\n| c=="\t)
in = F,

else if (in == F)
{in="T; nw++;}

if (c=="\n")nl++;

if (nl > nc) nw = nc+ nl;

else {if (nw > nc) nc =nw —nl;} }

out(nl,nw,nc); }

11

Orphans and Residues

For each v; € Vp we can define:
residue(M,v;) = M\SL;

So the residue of a slice is defined to be the set of points that are
orphaned. Using this concept, we can define a slicing obfuscation as
follows:

Definition An obfuscation O is a slicing obfuscation for a pro-
gram P and a variable v; if it decreases the size of the residue (the
number of orphaned points), i.e.

|residue(P, v;)| > |residue(O(P), O(v;))|

12

Residue Metrics

Compactness Compactness measures the total number of orphaned
points in relation to the size of the method.

RES.
C(M) = %

MinDensity The minimum density is the ratio of the smallest
residue in a method to the method length.

1
MinD(M) = M min |residue(M, v;)|

Density Density compares the average residue size to the method
size.

1 |residue(M, v;)|
D(M

) = Vol 2 Z 2]
MaxDensity The maximum density is defined to be the ratio of
the largest residue in a method to the method’s length.

MaxD(M) = max |residue(M, v;)|

|M]

13

Table of Results

| Method M | |[M] | |[Vo]| | For each v; the residue size |RES;| | |[RESy,| | MinD(M) | D(M) | MaxD(M) | C(M) |

DS 21 2 |prod | 9 |sum | 9 14 42.9% 42.9% 42.9% 66.7%
psObf1 22 2 |prod| 6 | sum | 9 11 27.3% 34.1% 40.9% 50.0%
psObf2 26 2 |prod | 7 |sum | 7 9 26.9% 26.9% 26.9% 34.6%
search 107 2 n 98 | secs | 96 105 89.7% 90.7% 91.6% 98.1%

searchObf1 | 120 | 2 n 75 | secs | 109 110 62.5% 76.7% 90.8% 91.7%
searchObf2 | 127 | 2 n 78 | secs | T9 81 61.4% 61.8% 62.2% 63.8%

rov 124 2 SJuel | 101 | dist | 78 105 62.9% 72.2% 81.5% 84.7%
rovObf1 129 2 fuel | 69 | dist | 83 84 53.5% 58.9% 64.3% 65.1%
rovOb f2 132 2 fuel | 70 | dist | 72 73 53.0% 53.8% 54.5% 55.3%
scatter 143 3 st 27 | ru 32 | 1| 134 135 18.9% 45.0% 93.7% 94.4%

scatterObf1 | 148 3 St 16 | ru 16 [i| 16 17 10.8% 10.8% 10.8% 11.5%
scatterObf2 | 150 3 st 11 U 11 |4 | 11 12 7.3% 7.3% 7.3% 8.0%

14

Graph of Results

100% - B
90% -]
80% -
70% - @ MinDensity
60% - m Density
50% - — O MaxDensity
40% - O Compactness
30% -
20% -
10% -
0% : M 15
N Q& N
¢ & § & & § S 5 & <@ & $
X & & O L S $ & QO O
Q Q (%) {b'\(, {b'\c, ko &0 (%) (‘b\:\@ 'b\}@
K P N &

Future work

= Develop heuristics for combining and placing
obfuscations in an order which maximises the
difficulty of de-obfuscation.

= Remove some of our restrictions: e.qg. allow
non-exact arithmetic, pointers, and other
Imperative constructs.

= The abstraction and conversion functions can
remain visible in the code and so we should
try to combine these functions with
surrounding statements.

16

Orthogonal Client Replacement Model

ALGORITHM:

= Orthogonal client generation

= INPUT

= C: Client, S: Server

= QUTPUT

= Ci: Next client, Si: next server

= BEGIN

= 1 Ci :=C

= 2 While MaxSimilarity(Ci, {C1 ... Ci-1}) > SimThr
= 3 C" = RandomTransform(C)

= 4 CcC :=C*

= 5 (Ci, Si1) :-= MoveCompToServer(C")
= 6 End While

= 7 Output (Ci, Si1)

= END

17

Conclusion

= Proposed a new approach of designing obfuscations
by attacking a program first then defending against
further attacks

= Created obfuscations that have false data
dependencies. Aim was to include statements in the
slice that are orphaned.

= We used data refinement and a state-function view of
program semantics to create a framework in which
we can specify data obfuscations.

= QOur framework allows us to prove the correctness of
obfuscations and to create generalised obfuscationsl.8

Questions

Modelling statements as functions

We suppose that a statement takes an initial
state as input and returns a new state.

For example:
= assignment

(x :=¢€)(og) = 09 D {x — e|zg/z]} where z — xy € 0y
= conditional

: [T(o0) if p(oo)
(if p then T else E)(og) = {E(O’Q) therwise

20

Abstraction and Conversion functions

We suppose that an obfuscation is a data refinement
and so an obfuscation O will act on a state o to produce
a new state O(0).

We require that o ~ O(o0) < (0 = af (O(0))) AN I(O(0))

where af Is the abstraction function for the obfuscation
and | is an invariant.

To perform the obfuscation, we need a conversion
function cf which satisfies cf; af = skip

21

Proving correctness

Using our framework, we can prove the correctness of
our data obfuscations by establishing an equivalence of

the form: of: B= O(B): of

Our correctness proofs have four stages:
= Converting to simultaneous equations
= Substituting values

= Removing redundant definitions

= Converting back to code

22

Correctness eqguations

An obfuscated block of statements O(B) Is said
to be correct with respect to B if satisfies:

(Vo) @ 0~ O(0) = B(o) ~ O(B)(O(0))
Using the commuting diagram:

ofy B=O(B); of 5o,
Or: A A
B=cf; OB); of Y af
O(o) > O(7)

23

Slicing Metrics

Tightness measures the number of statements common to every

slice: T'(M) = %

1\./Luluu1m Coverage is the ratio of the smallest slice in a method
its length: Min(M) = ﬁ n; |SL;

Coverage compares the length of slices to the length of the entire
Vol |SL;
method: C(M) = S119 PEd

Maximum Coverage is the ratio of the largest slice in a method

to its length: Max(M) = |M| max; | SL;|

Overlap is a measure of how many statements in a slice are found

in all the other slices: O(M) = |Vo E'V()' |?§Lnf|

24

Results for wordcount

Method M
we
wec-obf1

wec-obf1

|M| |Vo| Size of nl Size of nw Size of nc |SLint]
36 3 15 20 10 7
42 3 30 30 30 28
T(M) Min(M) C(M) Max(M) O(M)

19.4% | 27.8% | 41.7% 55.6% 50.6%

66.7% | 71.4% | 71.4% 71.4% 93.3%

Measurements obtained from CodeSurfer

25

