
1

Slicing Obfuscations

Anirban Majumdar
University of Trento

Italy
anirban@disi.unitn.it

2

Obfuscation: A functionality-preserving and
secrecy-enhancing transformation
We doubt there is a precise and efficiently computable measure of
the work required by a reasonably competent adversary to
discover a secret protected by obfuscation.

We treat obfuscation as a heuristic process, looking for
transformations which are difficult but not impossible to reverse
engineer.

Thinking in terms of a virtual black-box an obfuscation function is
a failure if an adversary could learn something from an
examination of the obfuscated version of the program that cannot
be learned (in roughly the same amount of time) by merely
executing the program repeatedly.

3

A framework for obfuscation

We restrict our attention to an imperative
language which contains assignments,
conditionals, loops, and compositions.
We extend a previous work on using
functional programs and data refinement for
imperative programs.
Benefits: we can generalise previous
obfuscations, and we can also prove their
correctness.

4

Attack model - Program Slicing

A reverse engineering technique often used to aid
program comprehension.
A slice consists of the program parts that potentially
affect the values computed at a particular point.
We slice our unobfuscated program and use this
information to create obfuscations that are targeted to
restrict the effectiveness of slicing.
We consider the nodes from the SDG that are left
behind after slicing – we call such nodes the orphans.
Add in obfuscations that create dependencies
between the slicing variable and the variables
contained within the orphans.

5

A Particular Example

As an example, consider
the program wc which
counts the number of
lines (nl), words (nw) and
characters (nc) in a file.

6

A Particular Example

As an example, consider
the program wc which
counts the number of
lines (nl), words (nw) and
characters (nc) in a file.

The backwards slice
from nl.

7

A Particular Example

As an example, consider
the program wc which
counts the number of
lines (nl), words (nw) and
characters (nc) in a file.

The backwards slice
from nl …

Our goal is to include
these orphans in the
slice.

8

An Example Obfuscation

As an obfuscation, we
add a bogus predicate
(that is always false) to
create dependencies.

9

An Example Obfuscation

As an obfuscation, we
add a bogus predicate
(that is always false) to
create dependencies.

This predicate uses the
invariant:

10

An Example Obfuscation

As an obfuscation, we
add a bogus predicate
(that is always false) to
create dependencies.

The backwards slice
from nl.

Now we’ve included all
of the orphans in the
slice for nl.

11

An Example Obfuscation

As an obfuscation, we
add a bogus predicate
(that is always false) to
create dependencies.

We have also included
the orphans of the slices
for the other two output
variables.

12

Orphans and Residues

13

Residue Metrics

14

Table of Results

15

Graph of Results

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

ps

ps
Obf1

ps
Obf2

se
arc

h

se
arc

hO
bf1

se
arc

hO
bf2 rov

rovO
bf1

rovO
bf2

sc
att

er

sc
att

erO
bf1

sc
att

erO
bf2

MinDensity

Density

MaxDensity

Compactness

16

Future work

Develop heuristics for combining and placing
obfuscations in an order which maximises the
difficulty of de-obfuscation.
Remove some of our restrictions: e.g. allow
non-exact arithmetic, pointers, and other
imperative constructs.
The abstraction and conversion functions can
remain visible in the code and so we should
try to combine these functions with
surrounding statements.

17

Orthogonal Client Replacement Model

ALGORITHM:
Orthogonal client generation
INPUT
C: Client, S: Server
OUTPUT
Ci: Next client, Si: next server
BEGIN
1 Ci := C
2 While MaxSimilarity(Ci, {C1 ... Ci-1}) > SimThr
3 C' := RandomTransform(C)
4 C := C'
5 (Ci, Si) := MoveCompToServer(C')
6 End While
7 Output (Ci, Si)
END

18

Conclusion

Proposed a new approach of designing obfuscations
by attacking a program first then defending against
further attacks
Created obfuscations that have false data
dependencies. Aim was to include statements in the
slice that are orphaned.
We used data refinement and a state-function view of
program semantics to create a framework in which
we can specify data obfuscations.
Our framework allows us to prove the correctness of
obfuscations and to create generalised obfuscations.

19

Questions

20

Modelling statements as functions

We suppose that a statement takes an initial
state as input and returns a new state.
For example:

assignment

conditional

21

Abstraction and Conversion functions

We suppose that an obfuscation is a data refinement
and so an obfuscation O will act on a state σ to produce
a new state O(σ).

We require that
where af is the abstraction function for the obfuscation
and I is an invariant.

To perform the obfuscation, we need a conversion
function cf which satisfies

22

Proving correctness

Using our framework, we can prove the correctness of
our data obfuscations by establishing an equivalence of
the form:

Our correctness proofs have four stages:
Converting to simultaneous equations
Substituting values
Removing redundant definitions
Converting back to code

23

Correctness equations

An obfuscated block of statements O(B) is said
to be correct with respect to B if satisfies:

Using the commuting diagram:

Or:

24

Slicing Metrics

25

Results for wordcount

Method M |M| |Vo| Size of nl Size of nw Size of nc |SLint|
wc 36 3 15 20 10 7

wc-obf1 42 3 30 30 30 28

T(M) Min(M) C(M) Max(M) O(M)
wc 19.4% 27.8% 41.7% 55.6% 50.6%

wc-obf1 66.7% 71.4% 71.4% 71.4% 93.3%

Measurements obtained from CodeSurfer

