
Could Software Watermarks

Express Both Rules

and Assurances?

Prof. Clark Thomborson

Presentation to the

ReTRUST Group

Villach, Austria

11th March 2008

SW WM Rules 11Mar08 2

Agenda

� What is security?

� What is software watermarking, and how

is it used?

� Are we missing any cases?

SW WM Rules 11Mar08 3

What is Security?
(A Taxonomic Approach)

The first step in wisdom is to know the things themselves;

this notion consists in having a true idea of the objects;

objects are distinguished and known by classifying them

methodically and giving them appropriate names.

Therefore, classification and name-giving will be the

foundation of our science.

Carolus Linnæus, Systema Naturæ, 1735

(from Lindqvist and Jonsson, “How to Systematically

Classify Computer Security Intrusions”, 1997.)

SW WM Rules 11Mar08 4

Standard Taxonomy of Security

1. Confidentiality: no one is allowed to read, unless they

are authorised.

2. Integrity: no one is allowed to write, unless they are

authorised.

3. Availability: all authorised reads and writes will be

performed by the system.

� Authorisation: giving someone the authority to do

something.

� Authentication: being assured of someone’s identity.

� Identification: knowing someone’s name or ID#.

� Auditing: maintaining (and reviewing) records of

security decisions.

SW WM Rules 11Mar08 5

A Multi-Level Hierarchy

� Static security: the Confidentiality, Integrity, and

Availability properties of a system.

� Dynamic security: the technical processes which

assure static security.

� The gold standard: Authentication, Authorisation, Audit.

� Defense in depth: Prevention, Detection, Response.

� Security governance: the “people processes”

which develop and maintain a secure system.

� Governors set budgets and delegate their responsibilities

for Specification, Implementation, and Assurance.

SW WM Rules 11Mar08 6

Generalized Static Security

� Confidentiality, Integrity, and Availability are properties

of read and write operations on data objects.

� What about executable objects?

� Unix directories have “rwx” permission bits.

� XXXX-ity: all executions must be authorised.

� GuiJu FangYuan ZhiZhiYe ⇒⇒⇒⇒ a new English adjective

“Guijuity” (coined in Beijing, 2007).

� At the top of a taxonomy, we should have a clear and

important distinction, not a long list of alternatives.

� Confidentiality, Integrity, and Guijuity are Prohibitions (P–).

� Availability is a Permission (P+). S

P− P+

AC I G

S

AC I G

SW WM Rules 11Mar08 7

Prohibitions and Permissions

� Prohibition: prevent an action.

� Permission: allow an action.

� There are two types of action-secure systems:
� In a prohibitive system, all actions are prohibited by

default. Permissions are granted in special cases, e.g.
to authorised individuals.

� In a permissive system, all actions are permitted by
default. Prohibitions are special cases, e.g. when an
individual attempts to access a secure system.

� Prohibitive systems have permissive subsystems.

� Permissive systems have prohibitive subsystems.

SW WM Rules 11Mar08 8

Recursive Security

� Prohibitions, i.e. “Thou shalt not kill.”
� General rule: An action (in some range P−) is
prohibited, with exceptions (permissions) E1, E2, E3,
...

� Permissions, i.e. a “licence to kill” (James Bond).
� General rule: An action in P+ is permitted, with

exceptions (prohibitions) E1, E2, E3, ...

� Static security is a hierarchy of controls on actions:

P+: permitted

E3

E1: prohibited

E2E11

E12

SW WM Rules 11Mar08 9

Is Our Taxonomy Complete?

� Prohibitions and permissions are properties of
hierarchical systems, such as a judicial system.
� Most legal controls (“laws”) are prohibitive: they prohibit

certain actions, with some exceptions (permissions).

� Contracts are non-hierarchical (agreed between
peers), and consist mostly of requirements to act
(with some exceptions):
� Obligations are promises to do something in the

future.

� Exemptions are exceptions to an obligation.

� Obligations and exemptions are not well-modeled
by action-security rules. Inaction security!
� Obligations arise occasionally in the law, e.g. a doctor’s

“duty of care” or a trustee’s fiduciary responsibility.

SW WM Rules 11Mar08 10

� Obligations are forbidden inactions; Prohibitions are
forbidden actions.
� When we take out a loan, we are obligated to repay it. We are

forbidden from never repaying.

� Exemptions are allowed inactions; Permissions are
allowed actions.
� In the English legal tradition, a court can not compel a person to give

evidence which would incriminate their spouse (husband or wife).
This is an exemption from a general obligation to give evidence.

� We have added a new level to our hierarchy.

Forbiddances and Allowances

S

Forbid Allow

PerPro Obl Exe

S

ExePro Per Obl

SW WM Rules 11Mar08 11

A Taxonomy of Security

� Three types of security: Static, Dynamic, Governance.

� Static: the rules.
� Prohibitions, permissions, obligations, exemptions.

� Dynamic: how the rules are enforced.
� The gold standard (Authentication, Authorisation, Audit).

� Defense in depth (Prevention, Detection, Response).

� Governance: how the rules are made.
� Governors set budgets and delegate responsibilities for Specification,

Implementation, and Assurance.

� We have defined a system consisting of a Secure Subsystem and its
Governors.

� Governors may themselves be regulated.

� Research question #1: Can governors govern themselves?
� Sed quis custodiet ipsos custodes?

� Can systems secure themselves, or are there only secure subsystems?

� Research question #2: Can the dynamic layer be more clearly defined?

SW WM Rules 11Mar08 12

Reviewing our Agenda

1. What is security?

2. What is software watermarking, and

how is it used?

3. Are we missing any cases?

SW WM Rules 11Mar08 13

Developing Use Cases

� We can find use cases at the dynamic and
governance layers of our hierarchy.
� A rule (static security) is not a use: we need an actor, a

system, and a desired action (or set of actions).

� We can also look for misuses: malicious actors who take
advantage of a system.

� There are also “confuses” – authorised users who cause
damage by mistake.

� Several years ago, I developed dynamic-use cases
for various software protection technologies.
� My purpose was to explain the functional differences

between these technologies.

� Let’s focus on the software watermarking entries...

SW WM Rules 11Mar08 14

Defense in Depth for Software
1. Prevention:

a) Deter attacks on forbiddances (use obfuscation, encryption,
watermarking, cryptographic hashes, or trustworthy computing).

b) Deter attacks on allowances (use replication, or resilient
algorithms).

2. Detection:

a) Monitor subjects (user logs), relative to a user ID. Use
biometrics, ID tokens, or passwords.

b) Monitor actions (execution logs, intrusion detectors), relative to a
code ID: cryptographic hashing, watermarking.

c) Monitor objects (object logs), relative to an object ID: hashing,
watermarking.

3. Response:

a) Ask for help: Set off an alarm (which may be silent –
steganographic), then wait for an enforcement agent.

b) Self-help: Self-destructive or self-repairing systems.

Watermarks are used at all three layers! (Is there only one type of
watermark, or are we using the same word for different things?)

SW WM Rules 11Mar08 15

Software Watermarking

Key taxonomic questions:

� Where is the watermark embedded?

⇒ How is the watermark embedded?

� When is the watermark embedded?

� Why is the watermark embedded?

⇒What are its desired properties?

SW WM Rules 11Mar08 16

Software Watermarking Systems

� An embedder EEEE(PPPP; WWWW; kkkk) → PPPPwwww embeds a message (the
watermark) WWWW into a program PPPP using secret key kkkk,
yielding a watermarked program PPPPwwww

� An extractor RRRR(PPPPwwww ; ...) → WWWW extracts WWWW from PPPPwwww
� In an invisible watermarking system, RRRR (or a parameter) is

a secret.

� In visible watermarking, RRRR is well-publicised (ideally
obvious).

� The attack set AAAA and goal GGGG model the security
threat.
� For a robust watermark, the attacker’s goal is a false-

negative extraction, usually by creating an attacked object
aaaa(PPPPwwww), with RRRR(aaaa(PPPPwwww); ...) ≠ WWWW such that PPPPwwww is valuable.

� For a fragile watermark, the attacker’s goal is a false-
positive: RRRR(aaaa(PPPPwwww); ...) = WWWW such that PPPPwwww ≠ PPPP is valuable.

� A protocol attack is a substitution of RRRR’ for RRRR, causing a
false-negative or false-positive extraction.

SW WM Rules 11Mar08 17

Where Software Watermarks are

Embedded

� Static code watermarks are stored in the
section of the executable that contains
instructions.

� Static data watermarks are stored in other
sections of the executable

� Static watermarks are extracted without
executing (or emulating) the code.
� A watermark extractor is a special-purpose static

analysis.

� Extraction is inexpensive, but we don’t know of any
robust static code watermarks. Attackers can
easily modify the watermarked code to create an
unwatermarked (false-negative) version.

SW WM Rules 11Mar08 18

Dynamic Watermarks

� Easter Eggs are revealed to any end-user

who types a special input sequence.

� Other dynamic behaviour watermarks:

� Execution Trace Watermarks are carried in the

instruction execution sequence of a program, when

it is given a special input sequence (possibly null).

� Data Structure Watermarks are built by a

program, when it is given a special input.

� Data Value Watermarks are produced by a

program on a surreptitious channel, when it is given

a special input.

SW WM Rules 11Mar08 19

Easter Eggs

� The watermark is

visible – if you know

where to look!

� Not very robust,

after the secret is

published.

� See

www.eeggs.com

SW WM Rules 11Mar08 20

Dynamic Data Structure Watermarks

� The embedder inserts code in the program, so that it
creates a recognisable data structure when given specific
input (the key).

� Details are given in our POPL’99 paper, and in two
published patent applications.
� Assigned to Auckland UniServices Ltd.

� I would very much like to find licensed uses for this technology!

� Implemented at http://www.cs.arizona.edu/sandmark/
(2000-)

� Experimental findings by Palsberg et al. (2001):
� JavaWiz adds less than 10 kilobytes of code on average.

� Embedding a watermark takes less than 20 seconds.

� Watermarking increases a program’s execution time by less than
7%.

� Watermark retrieval takes about 1 minute per megabyte of heap.

SW WM Rules 11Mar08 21

Thread-Based Watermarks

� A dynamic watermark is expressed in the
thread-switching behaviour of a program,
when given a specific input (the key).
� The thread-switches are controlled by non-nested

locks.

� NZ Patent 533208, US Patent App 2005/0262490

� Article in IH’04; Jas Nagra’s PhD thesis, 2006

� The embedder inserts tamper-proofing
sequences which closely resemble the
watermark sequences but which, if removed,
will cause the program to behave incorrectly.
� This is a “self-help” response mechanism.

SW WM Rules 11Mar08 22

SW Watermarking
(Review of Taxonomic Questions)

� Where is the watermark embedded?

⇒How is the watermark embedded?

� When is the watermark embedded?

� Why is the watermark embedded?

⇒What are its desired properties?

SW WM Rules 11Mar08 23

Active Watermarks

� We can embed a watermark during a design
step (“active watermarking”: Kahng et al.,
2001).
� IC designs may carry watermarks in place-route

constraints.

� Register assignments during compilation can
encode a software watermark, however such
watermarks are insecure because they can be
easily removed by an adversary.

� Most software watermarks are “passive”, i.e.
inserted at or near the end of the design
process.

SW WM Rules 11Mar08 24

Why Watermark Software?
(Thomborson & Nagra, 2002)

� Invisible robust watermarks: useful for

prohibition (of unlicensed use)

� Invisible fragile watermarks: useful for

permission (of licensed uses).

� Visible robust watermarks: useful for

assertion (of copyright or authorship).

� Visible fragile watermarks: useful for

affirmation (of authenticity or validity).

SW WM Rules 11Mar08 25

A Fifth Function?

� Any watermark is useful for the

transmission of information irrelevant to

security (espionage, humour, …).

� Transmission Marks may involve

security for other systems, in which

case they can be categorised as

Permissions, Prohibitions, etc.

SW WM Rules 11Mar08 26

Our Functional Taxonomy for

Watermarks [2002]

Assertion

(Visible)

Prohibition

(Invisible)

Robust

Affirmation

(Visible)

Permission

(Invisible)

Fragile

Protective

Transmission

Non-protective

Watermarks

But: there are no “assertions” and “affirmations”

in our theory of static security! Hmmm....

SW WM Rules 11Mar08 27

Future and Past Actions

� The Rules of static security
define what a system
should do in the future.

� Assertions (e.g. of
authorship) are
Assurances about a past
action.

� Affirmations (e.g. of
authenticity) are
Assurances about a past
inaction.

� Audit records are
Assertions.

� Identifications and
Authentications are
Affirmations.

� Maybe we can clean up
the second layer in my
security taxonomy!

Secure

Assure Rule

ForbidAffirm Assert Allow

Prohibit Obligate Permit Exempt

SW WM Rules 11Mar08 28

Summary/Review

1. What is security?
� Three types: static, dynamic, governance.

� Secure subsystems must have governors.

2. What is software watermarking, and how is it used?
� We have identified five types of watermarks.

� Invisible & robust watermarks have attracted the most
interest to date.

3. Research question #3: Are we missing any cases?
� Assertions and affirmations should be analysed carefully...

if implemented as watermarks they’d be visible & robust,
but why should we have a covertext?

� Are there different types of covertexts?

