Remote Entrusting by Orthogonal
Client Replacement

Ceccato Mariano!,
Mila Dalla Preda?,
Anirban Majumbar?,
Paolo Tonella’

'Fondazione Bruno Kessler, Trento, Italy
2University of Verona, Italy
3University of Trento, Italy

=>¢ Outline

» Code integrity problem

» Orthogonal replacement
— Obfuscation
— Code splitting

« Empirical validation

19/06/2008 Remote Entrusting by Orthogonal Client Replacement 2

=>¢{ Remote software trusting

* Remote software authentication: ensuring a (server) that
an un-trusted host (client) is running a “healthy” version
of a program (code integrity)

» Before delivering any service the server wants to know
that the client is executing according to its expectations

N

Un-trusted client

Un-trusted client <

Un-trusted client

19/06/2008 Remote Entrusting by Orthogonal Client Replacement 3

=3¢ Attack model

Attacker on un-trusted host: Attacks:

* Any dynamic/static * Reverse engineer and
analysis tool direct code change.

» Any software (buggers, * Runtime modification of
emulators, ...) the memory.

+ Read/write any memory * Produce (possibly
location, register, network tampered) copies of P
message, file. that run in parallel.

* Interception and change
of network messages.

19/06/2008 Remote Entrusting by Orthogonal Client Replacement 4

Attacker goal

» Goal: to tamper with the application code
without being detected by the server

— Substantial program understanding effort by a
human to understand the inner logic to attack

e | _>
Client <- - Server
.’.

19/06/2008 Remote Entrusting by Orthogonal Client Replacement 5
|

=>¢

Our approach

 Periodically replace the client code with a
new version

— Orthogonal (obfuscated)
— Semantically different

_ : /)
(Client)

19/06/2008 Remote Entrusting by Orthogonal Client Replacement 6

Obfuscation

» Transforming a program CP into an equivalent one CP’
that is harder to reverse engineer, while maintaining its

semantics.

— Potency: obscurity added to a program

— Resilience: how difficult is to automatically de-obfuscate
— Cost: computation overhead of P’

CP

19/06/2008

> >

Remote Entrusting by Orthogonal Client Replacement 7

-5¢

Obfuscation

Student guy = new Student():
String name = “Mathematics";

guy.apply(course);
course.commitChanges();

Course course = new Course(name);

y1 x1 = newyl():

String x2 = “Mathematics";
y2 x3 = new y2(x2);
x1.z1(x3);

x3.22()

Object[] data = new Object[100];
data[1] = new Student();

data[2] = “Mathematics",

data[3] = new Course(data[2]);
guy.apply(data[3]);
data[3].commitChanges():

while (s < 10) {

Student guy = new Student()
if (a=2)

String name = " Mathematics";
else

String name = “Fisics";
Course course = new Course(name);
if (z > x)

guy.apply(course);
else

gut.retire()
course.commitChanges();
S ++

}

1. Layout obfuscation

19/06/2008

2. Data obfuscation

3. Control flow obfuscation

Remote Entrusting by Orthogonal Client Replacement 8

Splitting

» The code of CP, can be split into (C;, S;) where:
— G, remains on the client
— S, runs on the server

» This process ensures that

— the code left on the client is orthogonal with respect to the
previous clients

— An expired client can not longer be used (it would not work with
the new server)

19/06/2008 Remote Entrusting by Orthogonal Client Replacement

=>< Orthogonality

Statement orthogonality

clpif:

the understanding of the of ¢ the role in CP; does
not reveal information about the role of p in CP,

Program orthogonality
cp, L CP; if:
they contains only* orthogonal statements

*Not possible to transform or move to the server:
» System calls

* Library calls

* Input output operations

19/06/2008 Remote Entrusting by Orthogonal Client Replacement

=3¢ Orthogonal client
BRUNO KESSLeR generation

-1-

]
(G 8)

19/06/2008 Remote Entrusting by Orthogonal Client Replacement 11
-—

=5 Transformati

EEHB%?E?SELER rans orma lon

 Pool of semantic preserving transformations
from a catalog

« Propagations of annotations about black
statements and performance information

« The goal is to obstruct code comprehension

19/06/2008 Remote Entrusting by Orthogonal Client Replacement 12

Splitting

repeat
CP, = RendomTransform (CP)
CP =CP

Leave on the client:

 Statement of CP, that are orthogonal to all
previous C, ...GC,

* Invariable part (black)
» Performance intensive statements

19/06/2008 Remote Entrusting by Orthogonal Client Replacement 13

=3¢ Acceptance condition

repeat
CP, = RendomTransform (CP)
CP = CPl

— (G,..S,) = MoveCompToServer(CP;, Cs,...,C,)

until (GLC)A ... A (LGl

* The new client
—is orthogonal
—is not just black statements (performance)

 |teration in case the condition is not met

19/06/2008 Remote Entrusting by Orthogonal Client Replacement 14

Empirical validation

19/06/2008 Remote Entrusting by Orthogonal Client Replacement 15

=3¢ Clone based orthogonality

» Orthogonality from a program comprehension
point of view is hard to define and quantify

 Practical and computable approximation of
orthogonality: based on clones

Statement orthogonality
clpif:
/ the understanding of the of ¢ the
- Clones role in CP; does not reveal
information about the role of p in
CP,

CP, CP,

19/06/2008 Remote Entrusting by Orthogonal Client Replacement 16

Alias based
opaque predicates

» Opaque predicate: conditional expression whose value is
known to the obfuscator, but is difficult for an adversary to
deduce statically

» Precise inter-procedural static analysis is intractable

19/06/2008 Remote Entrusting by Orthogonal Client Replacement 17

=3¢ Alias based

opaque predicates

Aliases :
f== class A { if (gl=h){
g'!=h intf1 ; updateAlias() ;
Update : int 2 ; tmp =1 ;
updateAlias () void m () { tmp = tmp - f1 ;
int tmp ; updateAlias() ;
class A { if (f==g){ f1=f1+f2;
int f1 ; f1=1; }
int {2 ; updateAlias() ; else {
void m () { f2 = f1 ++; f1=tmp/f2;
f1=1; ‘ } tmp = 12%59+12 ;
2 = f1 ++; else { updateAlias() ;
inttmp =f1; updateAlias() ; }
tmp =tmp - f1 ; tmp=f1+2/5; }
f1=f1+1f2; f1 =f2-tmp; }
} }
}

19/06/2008 Remote Entrusting by Orthogonal Client Replacement 18

Case studies

» CarRace (on-line game)
— CP, e =220 loc

Chat application
—CP =110 loc

On line applications
Written in java (~1K loc each)

Source code is sensitive to malicious
modifications

19/06/2008 Remote Entrusting by Orthogonal Client Replacement 19

=3¢ Clone size threshold

Small threshold
Too many iterations of the algorithm
— exponential grown of the source code
Most of the reposted clones are false positives
Improvements do not bring more security

Large threshold
Algorithm is fast
Too many false positives
— Clients contains clones that could leak information to an attacker

repeat
CP, = RendomTransform (CP)
CP = CP,

(C;, S;) = MoveCompToServer(CP,, C;....,C,,)
until (C,LC)A...A(CLC,)

19/06/2008 Remote Entrusting by Orthogonal Client Replacement 20

10

19/06/2008

Clone size threshold

L Min. clone length
Application Clones
Statements Tokens
CarRace 1 14 123
2 28 33
3 42 6
4 56 1
5 70 0
ChatClinet 1 12 69
2 24 27
3 36 5
4 48 1
5 60 0

Remote Entrusting by Orthogonal Client Replacement

21

-5¢

19/06/2008

Application No. of clients No. of clones

CarRace 10 1
50 9

100 21

500 160

1000 O 347
ChatClient A0 1
50 7

100 11

500 97

< _1000_) 218

Remote Entrusting by Orthogonal Client Replacement

Generation Performance

22

11

Attacks

» Opaque predicates could be attacked
through dynamic analysis (debugging)

— Removing branches that are not executed
could cause the elimination of useful code

— We could add predicates that infrequently
evaluate to True (False) and if removed cause
the application to malfunction

19/06/2008 Remote Entrusting by Orthogonal Client Replacement 23

=3¢ Future works

» Clone size threshold estimation requires further
investigation
» Implementation of a full catalog of obfuscations

— e.g., variable splitting/encoding of the code left on the
client

 Evaluating how long a piece of code can resist
before been attacked

— Correct estimation of the replacement frequency

19/06/2008 Remote Entrusting by Orthogonal Client Replacement 24

12

