

3. Circuit Trans	sforma	ation		KATHOLIEKE UNIVERSITEIT LEUVEN
AND gate with inp	outs a,b	and ou	utput c	
 Compute intermed 	liate valu	ies z _{ij} for	i≠j	
■ If 1 <= i < j <= i	t+1: Intro	duce a r	andom bit gate z _{ij}	
Else: z _{ij} = (z _{ji} +	a _i b _j) + a _j	b _i		
 Output of AND gat 	e: c _i = a _i	b _i + z _{i1} +	+ Z _{it+1}	
Soundness:				
 Observe: z_{ij} + z 	$z_{ii} = a_i b_i + b_i$	a _i b _i		
C ₁	a ₁ b ₁		z ₁₃	
C ₂	z ₂₁	a ₂ b ₂	z ₂₃	
C ₃	Z ₃₁	Z ₃₂	a ₃ b ₃	
				14/20

4. Drawbacks in Practice
 Power Analysis model:
 An adversary learns not the value on the wire but if the value on the wire has flipped
 Non-invasive adversary obtains power consumption by measuring from outside
Ishai construction in the power analysis model?
- Perfect security cannot be achieved in power analysis model
 Attack: all shares of an input can contribute to the measured power consumption at one moment → measurement is correlated with secret input
18/20

