
Mikhail Atallah
Purdue University (CS, CERIAS)

Arxan Tech. Inc.

• Piracy of the software itself
– Unlicensed copies

• Piracy of data viewed using the
software
– Movies, e-books, etc

• Theft of secrets in the software
– Crypto keys

• Theft of IP (e.g., algorithms)
– Reverse engineering
– Code-lifting

• Unauthorized modification
– Remove or add functionalities
– Restore pre-disabled functionalities

• Turn demo version into full

• Adversary controls all processor(s)
• Adversary controls all but 1

 processor
– “who will protect me from that 1 chip

 in my PC that is under your control”

• Adversary control of data
– Protect integrity of control flow

•  Encryption
– Aucsmith, …

•  Transformations
– Collberg, Thomborson, …
– Obfuscation (lexical, control, data)
– Watermarking (static, dynamic)
– Tamperproofing

•  Revisit in context of multicore ?

• Lower protection footprint
– Less performance penalty

• Better protection
– Better obfuscation

• One core is tamper-resistant
– More secure, but slower
– How to use it effectively

•  Zhang et al., Mana et al., Ceccato et al.
•  Split software into …

– Open components that run on unsecure
processors

– Hidden components that run on secure
processors

•  Hard for adversary to get hidden ones
•  Requires communication

•  Blocking – how long ?
•  If secure processor is remote …

– Latency (network)
– Computation at remote end

•  If secure processor is local …
– Latency (bus)
– Computation in secure processor (slower)

• Dvir et al.
– Virtual leashing to mitigate latency

problem
– Split into active and lazy
– Run active tasks on unsecure

processor
– Run lazy tasks on trusted processor

• Less likely for all copies to go
 wrong in same way
– NASA (3-way)

•  Johnson et al.
– Within same processor

•  Integrity verification
•  “Prove your integrity” challenges
• Trusted challenger

– Issues challenges to responder

• Problems with binary attestation
– Versions, patches

• Property-based
– Sadeghi, Stueble …

• Time-based
– Kennell et al., Seshadri et al.
– Shankar et al. (attacks)
– Garay et al. (better challenges)

• Anonymous
– ZKP

• Scandariato et al.
– Proofs-generating module
– Run-time refresh of module

• No need to tamper: Run in VM
– Trap unwanted functionalities

• Anti-VM
– Similar to anti-debug
– How to detect if running on a VM

• How to react
– Cause crash ?

•  PUF = Physically Un-clonable Function
•  Produces response R to input C

– R is obtained from a physical device upon
providing it with C as input

– Devices with same blueprint from same
production batch have different functions

•  Impossible to mimic in software
– Even when in physical possession of device
– Attempted physical probing destroys it

• Use PUF to bind software to a
 specific instance of a hardware
– Bind PUF responses to encryption key

• Cannot run pirated software
 without access to PUF

• Can use multiple copies
– “PUF server”

• Fake failure
– Get additional copy
– Herzberg et al.

• Goldreich, Ostrovsky
– Prevent replication w. HW, encryption
– Hide pattern of memory accesses

• Simulation on oblivious RAM
– Input-independent memory accesses

• Polylogarithmic cost
– Logarithmic lower bound

•  Impossibility results
– AV, obfuscation, …

• Not necessarily bad news
•  “Good enough” protection

– Protecting for 2 weeks often OK
– Information is perishable

• Need to quantify

•  Strength of protection
– Time & effort to defeat
– Cost of applying protection
– Effort, computation, $, …

•  Footprint of protection
– On performance (speed, space, …)
– On user (convenience)
– On QA process

•  The measurement problem
•  Red-teaming ?

– Team-dependent (experience, luck, …)
– Non-repeatable

•  Modeling & simulation ?
– Difficult (dangerous?)

•  Piggyback on other metrics work ?
– E.g., software metrics

• Let insurance companies do it?
– Under-reporting
– Mis-pricing
– Too coarse

