Robust Combiner for White Box Security

Amir Herzberg Haya Shulman

Bar Ilan university

M

Robust Combiner for White Box Security: **Outline**

- White-box security
 - ☐ Definition, applications, negative results
- WBRPE: Definition and properties
- Using Cryptanalysis-Proven Schemes and Robust Combiners
- WBRPE Robust Combiner

White Box Security

- White-box security:
 - □ Program running in hostile environment
 - ☐ May contain proprietary secrets (e.g. keys)
 - ☐ Ensure confidentiality of secrets and integrity of execution
- Why is White-Box Security Interesting?
 - □ Practical applications
 - DRM, Trusted Computing
 - Agents running in (untrusted) marketplace
 - Grid computing... and more
 - ☐ No existing practical, secure schemes
 - White-box encryption ?
 - Obfuscators ?
 - ☐ Theoretical interest: is white-box security feasible?
 - Negative results: obfuscators

White-Box Security: Obfuscation

- Most common approach, building block: <u>obfuscators</u>
- Obfuscator O: transforms program P to O(P) s.t.
 - \square O(P) computes same function as P
 - □ Adversary cannot learn more from O(P) than from oracle access to P
- [Barak et al.]: no `obfuscator` for all programs
- [Collberg]: constructions and tools
 - ☐ But: no secure obfuscator (yet?) to simple modular programs
 - ☐ At least, no open/published design
- Goal: explore other white-box security primitives
 - ☐ Avoid impossibility results
 - ☐ Try to achieve secure, open, practical solutions
 - ☐ Candidate: WBRPE (White Box Remote Program Execution)

WBRPE (White-Box Remote Program Execution)

- Program sent by (trusted) <u>local host</u>
- Executed on (potentially hostile) <u>remote host</u>
- Using keys, `OVM` (Obfuscated Virtual Machine) generated by <u>Trusted Third Party</u>
- Security properties:
 - ☐ Confidentiality of program sent by local host
 - □ Confidentiality of the input *a* of remote host
 - lacktriangle By allowing only programs P passing validation function V (set by remote)
 - □ Output integrity: output is result of running *P* (over some *a*)
- Efficiency
 - ☐ Local host has limited amount of work
 - ☐ One-round computation

WBRPE: Entities, Flows

- WBRPE: possible white box security building block
- Entities: Trusted Party, Local Host, Remote Host

WBRPE: Components (Algorithms)

- Generator *G* : run by Trusted Party
 - \Box Generates key k (for local host)
 - □ And Obfuscated Virtual Machine OVM (for remote host)
- Encryption' (of program sent by local host)
- Decryption' (of result sent by remote host)

WBRPE: Goals and Results

- Reach comparable situation to cryptography:
- Provably secure WBRPE schemes
 - ☐ May not be practical (cf. [GM84, OTP])
- Practical, efficient, cryptanalysis-proven WBRPE schemes
 - □ Secure by evidence of failed cryptanalysis, safety margins
- Results
 - ☐ Theoretical feasibility results (provably secure schemes) [next]
 - □ Robust combiner: given two candidate WBRPE schemes, build one that is secure if one of the two candidate schemes is secure
 - Allows safety-margins in design

Robust Combiner for White Box Security: **Outline**

- White-box security
 - □ Definition, applications, negative results
- WBRPE: Definition and properties
- Using Cryptanalysis-Proven Schemes and Robust Combiners
- WBRPE Robust Combiner

Using Cryptanalysis-Proven Schemes

- We will show that provably-secure WBRPE schemes exist
- Yet, we may use `cryptanalysis-proven` schemes:
 - □ `Proven` only by failure to break (cryptanalyze)
 - ☐ To avoid limitations, e.g. constant # of runs
 - ☐ For better (reasonable) efficiency
- Just like for encryption schemes
 - □ Provably-secure schemes exist ([GM84,...])
 - ☐ Yet, we use cryptanalysis-proven schemes: AES, RSA...
- We won't present candidate WBRPE schemes today
- But: we present <u>robust combiner</u> for WBRPE schemes

Robust Combiners: Security by Redundancy

- Resilient` security using multiple schemes:
 - \square Combine *n* schemes, $E = C(E_1, E_2, ..., E_n)$
 - □ C is a (t,n)-robust combiner if: $(t \text{ or more of } E_1, ... E_n \text{ are secure}) \longrightarrow E$ is secure
 - □ `Belt and suspenders` use of cryptanalysis-proven schemes
- Known robust combiners
 - □ Encryption, Mac/Sign, Commitment,... [H05/8]
 - E.g., cascade encryption: $E_{k1,...kn}(m) = E_{1,k1}(E_{2,k2}(...(E_{n,kn}(m)...)))$
 - □ Oblivious Transfer, PIR, hash, ... [HKNRR05,...]
- Our result: robust combiner for WBRPE schemes
 - ☐ Esp. important, considering no existing candidates!!

White Box RPE Robust Combiner

- No established practical WB-security scheme
 - ☐ So we should robustly-combine candidates!
- Given two candidate White-Box RPEs W', W"
- Let $W \leftarrow W' \bullet W''$ be the cascade of W', W''
 - ☐ As defined in next foil...
- WBRPE Cascade is a robust combiner
 - \square W is secure WBRPE if at least <u>one</u> of W', W'' is secure
 - ☐ For all WBRPE security specifications

be.

WBRPE Cascade: a Robust Combiner

WBRPE Cascade: a Robust Combiner (Simplified)

WBRPE Cascade: Generation $G(1^k)$

TRUSTED THIRD PARTY

```
G(1^{k}): \{ (k',OVM') \leftarrow G'(1^{k}), (k'',OVM'') \leftarrow G''(1^{k}), (e,d) \leftarrow G_{E}(1^{k}); \\ OVM="OVM(C_{p},a): \{ return OVM''(C_{p},E_{e}(a)) \} "; \\ UP="UP(c_{p} | |c_{a}): \{ p=D_{d}(c_{p}); return P(D_{d}(c_{a})) \} "; \\ c_{up}=H'_{k}, (UP); k=(k'',k',OVM',e,c_{up}); \\ Return (k,OVM); \\ \}
```


WBRPE Cascade: Local Host

M

WBRPE Cascade: a Robust Combiner

Conclusions and Further Work

- Goal: foundations to white box security
- WBRPE: alternative model for SW 'hardening'
 - ☐ Candidate for `white box security building block`
- Presented Robust Combiner for WBRPE
 - ☐ Secure if at least one of the candidates is secure
 - ☐ Some details skipped (esp.: program validation)
- Questions?
- Thank you