14

Software protection and
dynamic analysis attacks

Mariano Ceccato ('), Anirban
Majumdar @), Paolo Tonella (")
(1) FBK-IRST, Trento, ltaly
(2) University of Trento, Italy

R ——
-3¢
Motivation

Dynamic analysis is known to be one of the
most powerful tools available to attackers,
however its study was somewhat neglected
In software security analysis & modeling.

With respect to software engineers using dynamic
analysis, attackers:

» have a more focused objective;

» can easily accommodate wrong deductions.

T ———
=14
Software protection

» Check-summing, guards.

> Server-side execution (e.g., barrier slicing)
and assertion checking.

» Obfuscation (orthogonal replacement).

» Encrypted execution

Reverse engineering attacks:

1. static analysis;

2. dynamic analysis;
3. program comprehension.

2 Testing software protection

techniques
Select candidate Analyze the attack
program for output and draw
protection conclusions
Apply the protection Apply the attack
being tested to the - model
program

This testing framework can be applied at various abstraction levels.

-3¢
Attack model

Assumptions:
« what the attacker is or is not capable of doing;
» what tools the attacker is supposed to use;
« what information the attacker has access to.
Output:
* secret property of the program, whose integrity
IS supposed to be protected;

* accuracy of property localization,;

« capability of tampering (integrity violation).

T —
=53¢
Dynamic analysis tools

dDebuggers
dTracers
dlInstrumentors

A Sniffers
JEmulators
dDynamic slicers
JFeature location

... In addition to smart, opportunistic code
understanding.

-2¢ Scenario 1:
breaking check sums

Bob, the attacker, can:

1.Trace all data read from memory.

2.Compare traced data with program’s (binary/byte)
code.

3.Locate check summing operations.

4 .Modify code or execution to forge correct check sum

data.
5.Tamper with code integrity without being detected.

-2¢ Scenario 2:
breaking server-side checks

Bob, the attacker, can:

1.Sniff all messages exchanged with server.
2.ldentify security sensitive messages.

3.Locate code producing such messages.

4 .Modify code or execution to forge legal messages.
5.Tamper with code integrity without being detected.

-2 Scenario 3:
breaking obfuscation

Bob, the attacker, can:
1.Trace |/O operations that cannot be obfuscated.

2.Associate obfuscated code portions with |/O related

computations.
3.Locate code responsible for security sensitive

computations.
4 .Modify code repeatedly, until desired tampering is

achieved.

=14 :
Scenario 4:
breaking (naive) encrypted execution

Bob, the attacker, can:

1.Trace program’s state.

2.Follow data dependencies from obfuscated
iInstructions to memory change.

3.Locate code responsible for the execution of each
obfuscated opcode.

4.Inject malicious opcodes into the program’s
instructions.

o ———
-5¢
Common attack pattern

1. Observe: data (program’s state), statements being

executed, messages exchanged.

Identify: security sensitive data.

Locate: code containing security sensitive

computation.

4. Modify & tamper: violate code or execution integrity
without being detected.

W N

=14
Useful tools & techniques

1. Observe: debuggers, tracers, instrumentors,
sniffers.

2. ldentify: string matching, pattern matching,
clustering, concept analysis.

3. Locate: dynamic slicing, feature location,
reconnaissance, code inspection, reverse
engineering.

4. Modify & tamper: program transformation tools,
emulators.

14

Opportunistic trial and error

Modify code and/or execution.

Source Code
3

laiting for results from child tasks...\n
N
&index, sizeof(int), &source, &indexmsg, &nby
mpc_brecv((char #) &result[index], chunksizewsizeof(int), &sourc)
farraynsg, &nbytes);
—\n");
child task L source);
. index, resultl[index]);
extP1, result[indext+P1]);
ndex+P2, resultlindex+P2]);

printf("
ample results fror
result[%d]= %d\
result[%a]= %d\n", ind
printf(* result[%d]= #\n\n", i

3} s#s% end of parent code #8%/

Beginning of child process code

if (taskid > PARENT)
printf("Child task enrolled as tid= %d\n",taskid);
k

receive index from parent tasl
source = PARENT;
mpe_brecy ((Char)N G MISHNS e BENEEG roo, &ind o/ SENENEIES
malloc and then initialize my portion of the array
)

/
nypart = (int #) malloc (chunksize®sizeof(int));
if (mypart==NULL:

printf("error allocating space for A\n");

exit(1);

Por(i=0; ilchunksize; i++)
mypart[il = index + i}
Fs send results back to parent tas] i

mpc_bsend ((char &index, sizeof (int), PARENT, indexmsg) ;
mpo_bsend((char #)nypant, chunksizetsizeos (i NBBRENIE rrsynse) ;

Check if tampering is detected.

T ————
L Building a realistic attack
model

% Change your hat!

“* Apply the common pattern.

“» Be aware of existing tools and techniques.
“* Model opportunistic attempts, based on trial
and error.

“* Open your mind: attackers have a lot of
fantasy!

T —.
-3¢
Conclusions

In order to build strong software integrity
protections, we need a deep understanding of
dynamic analysis attacks:

» characteristics of available tools and techniques;
» attack model:

» experiments testing the resilience of existing
protection techniques;

» empirical studies.

