
Software protection and 
dynamic analysis attacks

Mariano Ceccato (1), Anirban 

Majumdar (2), Paolo Tonella (1)

(1) FBK-IRST, Trento, Italy

(2) University of Trento, Italy



Motivation

Dynamic analysis is known to be one of the 
most powerful tools available to attackers, 
however its study was somewhat neglected 
in software security analysis & modeling.

With respect to software engineers using dynamic 

analysis, attackers:

� have a more focused objective;

� can easily accommodate wrong deductions.



Software protection

� Check-summing, guards.
� Server-side execution (e.g., barrier slicing) 
and assertion checking.
� Obfuscation (orthogonal replacement).
� Encrypted execution

Reverse engineering attacks:

1. static analysis;

2. dynamic analysis;

3. program comprehension.



Testing software protection 
techniques

Select candidate 
program for 

protection

Apply the protection 
being tested to the 

program

Apply the attack 
model

Analyze the attack 
output and draw 

conclusions

This testing framework can be applied at various abstraction levels.



Attack model

Assumptions:

• what the attacker is or is not capable of doing;

• what tools the attacker is supposed to use;

• what information the attacker has access to.

Output:

• secret property of the program, whose integrity 

is supposed to be protected;

• accuracy of property localization;

• capability of tampering (integrity violation).



Dynamic analysis tools

�Debuggers

�Tracers

�Instrumentors

�Sniffers

�Emulators

�Dynamic slicers

�Feature location

… in addition to smart, opportunistic code 

understanding.



Scenario 1: 
breaking check sums

Bob, the attacker, can:
1.Trace all data read from memory.

2.Compare traced data with program’s (binary/byte) 
code.

3.Locate check summing operations.
4.Modify code or execution to forge correct check sum 

data.
5.Tamper with code integrity without being detected.



Scenario 2: 
breaking server-side checks

Bob, the attacker, can:
1.Sniff all messages exchanged with server.

2.Identify security sensitive messages.
3.Locate code producing such messages.

4.Modify code or execution to forge legal messages.
5.Tamper with code integrity without being detected.



Scenario 3: 
breaking obfuscation

Bob, the attacker, can:
1.Trace I/O operations that cannot be obfuscated.

2.Associate obfuscated code portions with I/O related 
computations.

3.Locate code responsible for security sensitive 
computations.

4.Modify code repeatedly, until desired tampering is 
achieved.



Scenario 4: 
breaking (naive) encrypted execution

Bob, the attacker, can:
1.Trace program’s state.

2.Follow data dependencies from obfuscated 
instructions to memory change.

3.Locate code responsible for the execution of each 
obfuscated opcode.

4.Inject malicious opcodes into the program’s 
instructions.



Common attack pattern

1. Observe: data (program’s state), statements being 
executed, messages exchanged.

2. Identify: security sensitive data.
3. Locate: code containing security sensitive 

computation.
4. Modify & tamper: violate code or execution integrity 

without being detected.



Useful tools & techniques

1. Observe: debuggers, tracers, instrumentors, 
sniffers.

2. Identify: string matching, pattern matching, 
clustering, concept analysis.

3. Locate: dynamic slicing, feature location, 
reconnaissance, code inspection, reverse 

engineering.
4. Modify & tamper: program transformation tools, 

emulators.



Opportunistic trial and error

Modify code and/or execution.

Check if tampering is detected.



Building a realistic attack 
model

� Change your hat!

� Apply the common pattern.

� Be aware of existing tools and techniques.

� Model opportunistic attempts, based on trial 

and error.

� Open your mind: attackers have a lot of 

fantasy!



Conclusions

In order to build strong software integrity 

protections, we need a deep understanding of 

dynamic analysis attacks:

� characteristics of available tools and techniques;

� attack model;

� experiments testing the resilience of existing 

protection techniques;

� empirical studies.


