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Large scale computing platforms

[Beowulf] Clusters : Chaos.lu

user
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Large scale computing platforms

Computing grids [Foster&al.97] : Grid5000, Globus etc.

Cluster 2

INTERNET

user

Cluster 1
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Large scale computing platforms

« Desktop grid » : Seti@Home, BOINC, XtremWeb etc.

INTERNET

user

3 / 31Result Certification Against Massive Attacks in Distributed Computations



Context Execution and certification model Independent case Dependent case Conclusion

Result-Checking issue

Falsified result : malicious act or not (cf. Seti@HOME [Molnar00])
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Software Counter-measures : prevent before / control after
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State of the art

Essentially devoted to batchs of independent tasks

Specific approach : Simple checker [Blum97]

check a [cheap] post-condition over computed results

↪→ DLP avec |G | = n : Ln

h
1
3
,
`

64
9

´ 1
3

i
– Simple checker O(log n)

The most efficient approach... if possible !

General approach : duplication

Direct certification of the batch with sequential tests [Germain-Playez03]

Batch reinforcement [Sarmenta03]

In all case : attackers modelisation

=⇒ What about dependent tasks ?
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Execution model : macro-dataflow graph

Abstract representation of a parallel execution P(i)

s1

f1

e1

f5

e2

task

terminal subgraph 

f4
terminal output

f3
f2

e3
e4

s2

associated to s2

G<(T) : predecessors of T in G

G≤(T) : G<(T) ∪ {T}
Execution engine : Kaapi

↪→ http://kaapi.gforge.inria.fr/

↪→ C++ library for high performance
parallel computing
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Execution platform

Grid

INTERNET
user

Unsafe Resources 
Safe Resources 

Verifier
Controler

Checkpoint Server

Resources partitionning |R| � |U|

Reliable system for task re-execution
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Impact of the faults (1)

o(T,E)

T

i(T,E)

E : execution of P(i) over U resources

↪→ G with intermediate values
↪→ T ∈ E : i(T, E) −→ o(T, E)

Ê : execution of P(i) over R resources

↪→ T ∈ Ê : î(T, Ê) −→ ô(T, Ê)

Definition (execution state)

E is correct iff E = Ê . Otherwise, E is falsified.

Task re-execution : compute ô(T,E ) from i(T,E ), compare to o(T,E )
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Impact of the faults (2)

Definition (Correct and Faulty task)

Faulty task T : o(T,E ) 6= ô(T,E )

↪→ directly detected by controlers
↪→ correct task T : no task in G≤(T) are faulty

Falsified result : o(T,E ) 6= ô(T, Ê )

↪→ hard to detect as ô(T, Ê) 6= ô(T, E)
↪→ nF falsified tasks
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Monte-Carlo certification (1)

Definition (certification Monte-Carlo algorithm)

A : (E , ε) −→

{
CORRECT (with error probability ≤ ε)

FALSIFIED (with falsification proof)

Cf. Miller-Rabin

Interests :

↪→ ε fixed by the user
↪→ a limited number of verifier calls (ideally o(n))
↪→ can be done in parallel on R !

Efficient detection of masive attack (nF ≥ nq = dq.ne)
↪→ the application should tolerate a limited number of faults

↪→ no assumption on attackers behaviour except nF

10 / 31Result Certification Against Massive Attacks in Distributed Computations



Context Execution and certification model Independent case Dependent case Conclusion

Monte-Carlo certification (2)

Resources avg. speed/proc total speed

U ΠU Πtot
U

R ΠR Πtot
R

Scheduling by on-line workstealing

↪→ execution (on U) : W1 � W∞
↪→ certification (on R) : W C

1 and W C
∞

Theorem (Executing and Certification Time)

w.h.p :

TEC ≤
[

W1

Πtot
U

+O
(

W∞
ΠU

)]
+

[
W C

1

Πtot
R

+O
(

W C
∞

ΠR

)]
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Independent case

Correct execution :
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Independent case

Falsified execution :
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Independent case

Monte-Carlo Test MCT (E )

10

4. Monte-Carlo certification of independent tasks

We first consider the case where all tasks in G are independent, as

illustrated in Fig 4. In this case, certification of tasks is equivalent to

certification of results.

a 14

2*b
b−1

b 1

15
2

0

a+1
T1 T3

T2

a 14
b 1

15
2

2*b

4

b+3a+1 T2

T1 T3

Figure 4. Correct and falsified execution of a parallel application composed of

three independent tasks.

Input: Execution E represented by G composed of independent tasks.

Output: The correctness of E (FALSIFIED or CORRECT)

Uniformly choose one task T in G;

// Re-execution of T on the R resources using the inputs i(T, E)

ô(T, E) ← ReexecuteOnVerifier(T, i(T, E));

if o(T, E) 6= ô(T, E) then
return FALSIFIED;

return CORRECT;

Figure 5. MCT algorithm: certification of independent tasks.

Fig 5 details the Monte-Carlo Test MCT initially presented in [26]

to detect if the execution E composed of independent tasks contains

forged tasks. Since all tasks in G are independent we always have

i(T,E) = î(T, Ê). If Algorithm MCT selects a forged task, then one

knows with certainty that the execution E has failed. However, if MCT

returns CORRECT, then one can only make conclusions based on the

probabilities of randomly selecting a falsified or non-falsified task. The

following lemma addresses these probabilities.

Lemma 2. Let E be an execution with n independent tasks, nF ≥ ⌈q.n⌉
of which have been forged. Then P (MCT = CORRECT ) ≤ 1− q.

Proof. As nF ≥ nq in a falsified execution, the probability that MCT

chooses a forged task is
nF

n
. Then the probability that MCT returns

CORRECT is
n−nF

n
= 1− nF

n
≤ 1− q.

The theorem below gives a lower bound on the number of tasks to be

re-executed in the framework of MCT in order to achieve the specific ǫ

fixed by the user.

jos2008.tex; 20/12/2007; 15:22; p.10

Theorem (Probabilistic certification by MCT (E ))

A(E , ε) : Nε,q = d log ε
log(1−q)e calls to MCT (E )

W C
1 ≤ Nε,qW∞ and W C

∞ = W∞

TEC ≤
W1

Πtot
U

+O
(

W∞

ΠU

)
+

Nε,qW∞

Πtot
R

+O
(

W∞

ΠR

)
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Independent case

Impact of ε over Nε,q
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Independent case

Impact of q over Nε,q
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Independent case

Non-detection illustration

n = 106, q = 1% and ε = 5%
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Dependent case

Correct execution :
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Dependent case

Falsified execution :
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Dependent case

nI initiators ∈ I(F ) :

{
i(T,E ) = î(T, Ê )

o(T,E ) 6= ô(T, Ê )

↪→ falsified tasks you are sure to detect

P (MCT (E ) = CORRECT ) ≤ 1− nI

n

Theorem (Minimal number of initiators)

For G with height h, maximal out-degree d and nF ≥ nq = dq.ne

nI ≥ q

⌈
n(d − 1)

dh − 1

⌉
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Dependent case

Lemma (Initiators caracterization)

I(F ) = {Ti ∈ F : F ∩ G<(Ti ) = ∅}

T is falsified ⇐⇒ G≤(T) ∩ I(F ) 6= ∅

Extended Monte-Carlo Test EMCT (E ) 17

Input: Execution E represented by G composed of dependent tasks.
Output: The correctness of E (FALSIFIED or CORRECT)

Uniformly choose one task T in G;
// Re-execution of G≤(T) on R to detect initiators
forall Tj ∈ G≤(T) / Tj as not yet been checked do

ô(Tj , E) ← ReexecuteOnVerifier(Tj, i(Tj , E));
if o(Tj , E) 6= ô(Tj , E) then

return FALSIFIED;
end

return CORRECT;

Figure 9. EMCT algorithm: certification of dependent tasks.

by the certification algorithm (i.e in G≥(Tj) ∩ G≤(T)). As nF ≥ q.n,
P (EMCT = CORRECT ) ≤ n−nF

n
≤ 1 − q. The average number of

verifications is simply the average number of tasks in the predecessor
graph checked in EMCT . Note that once T is selected, the cost can be
specified exactly as |G≤(T)|.

Theorem 2 (Probabilistic certification using EMCT ). Let E be an ex-
ecution with only dependent tasks and assume that E is either correct or
massively attacked with ratio q. ∀ǫ ∈ ]0, 1[, the number of independent
executions of algorithm EMCT sufficient to achieve a certification of
E with probability of error less than or equal to ǫ is Nǫ,q = ⌈ log ǫ

log(1−q)⌉.

Yet in the worst case, W C
1 = Ω(W1) and W C

∞ = Ω(W∞).

Proof. The demonstration relative to Nǫ,q is similar to the one described
for theorem 1. It then follows from lemma 7 that the certification cost
can be written W C

1 = Nǫ,qCG = Nǫ,q

n

∑

T∈G

∣

∣G≤(T)
∣

∣. This cost directly
depends on the underlying graph. In the worst case, the certification
performs a complete re-execution on R. This is the case for instance if
G is a chain of n unit tasks. In such context, the average number of

verifiers calls is CG =

∑

T∈G
|G≤(T)|
n

= n(n−1)
2n

= n−1
2 = Θ(W1) which

leads to W C
1 = Θ(W1). In addition, W C

∞ = W∞ on average.

The impact of parameters ǫ and q in EMCT on the number of
verifiers calls remains identical to MCT (see Fig 6).

If some graphs conduct to the worst-case cost during the certification
by EMCT with W C

1 = Θ(W1), there exist numerous graphs with
a much lower overhead. This is the case for instance with trees and
Fork-Join graphs as the next theorem states. Such graphs are common
in distributed computing as they typically represent parallel recursive
programs based on a Divide & Conquer strategy.

jos2008.tex; 20/12/2007; 15:22; p.17
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Dependent case

Theorem (Probabilistic certification by EMCT (E ))

A(E , ε) : Nε,q = d log ε
log(1−q)e calls to EMCT (E )

Expected cost per call : CG = 1
n

∑
T∈G |G≤(T)|

Worst case : W C
1 = Ω(W1) and W C

∞ = Ω(W∞)
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Dependent case on some specific graphs

Trees

IN−TREE

h=0

h=1

h=0

h=1h

OUT−TREE

Fork-Join graphs

d−1

h=0

h=1
Fork tasks

Join tasks

d

Theorem (Trees and Fork-Join graphs certification)

For G a tree or a Fork-Join graph with height h :

CG ≤ h + 3

TEC ≤
W1

Πtot
U

+O
(

W∞

ΠU

)
+O

(
hW∞

Πtot
R

)
+O

(
W∞

ΠR

)
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EMCT (E ) variants to limit worst case cost

1 EMCTα(E ) : check a proportion α of G≤(T)

2 EMCTK (E ) : check min
(
K , |G≤(T)|

)
tasks in G≤(T)

Definition (Minimal number of initiators)

Let k ≤ nF and V ⊂ Vt .
• minimum number of initiators with respect to V and k :

γV (k) = min |G≤(V ) ∩ I(F )| for

{
|F | ≥ k
G≤(V ) ∩ I(F ) 6= ∅

• minimal initiator ratio : ΓV (k) = γV (k)
|G≤(V )| .

Note : nq ≤ nF is the smallest number of falsified tasks
=⇒ γG (nq) is the smallest nI possible.
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EMCTα(E ) variants to limit worst case cost

EMCTα(E )20

Input: Execution E represented by G composed of dependent tasks.
Output: The correctness of E (FALSIFIED or CORRECT)

Uniformly choose one task T in G;
nα ← ⌈α|G≤(T)|⌉; //number of tasks to re-execute
Define Tα ⊂ G≤(T) composed of nα tasks uniformly chosen in G≤(T);
// Re-execution of Tα on R to detect initiators
forall Tj ∈ Tα / Tj as not yet been checked do

ô(Tj , E) ← ReexecuteOnVerifier(Tj, i(Tj , E));
if o(Tj , E) 6= ô(Tj , E) then

return FALSIFIED;
end

return CORRECT;

Figure 11. EMCTα algorithm: certification of dependent tasks.

Proof. The result of T is falsified iff there exists at least an initia-
tor in G≤(T). It follows that the probability that EMCTα returns
CORRECT is composed of (1) the probability p = 1 − nF

n
that the

result of T was indeed correct and (2) the probability that the re-
sult of T is falsified but none of the tasks in Tα where faulty. Then:
P (EMCTα = CORRECT ) ≤ p + (1 − p)P(”no faulty tasks in Tα”).
Depending on the value of α, two cases are distinguished.

1. if |G≤(T)| − γT (nq) < nα ⇐⇒ α > 1 − ΓT (nq) then Tα ∩ I(F ) 6= ∅
(recall that I(F ) denotes the initiator set in G). In that case, Tα
contains at least one initiator, P(”no faulty tasks in Tα”) = 0 and
P (EMCTα = CORRECT ) ≤ p ≤ 1− nF

n
≤ 1− q.

2. otherwise, α ≤ 1−ΓT (nq) and there is a probability that Tα contains
no initiator. Using lemma 5, P(”at least a task in Tα is faulty”) ≥
P(”at least an initiator in Tα”) ≥ αΓT (nF ). Thus

P (EMCTα = CORRECT ) ≤ p + (1− p) (1− αΓT (nF ))

≤ 1− (1− p)αΓT (nF )

≤ 1−
nF

n
αΓT (nF ) ≤ 1−

nq

n
αΓT (nF )

≤ 1− qαΓT (nF ) ≤ 1− qαΓT (nq)

It is now possible to quantify the cost of EMCTα.

Theorem 4 (Probabilistic certification using EMCTα). Let E be an
execution with only dependent tasks and assume that E is either correct
or massively attacked with ratio q.

Let Nǫ,q,α =







⌈

log ǫ
log(1−qαΓG(nq))

⌉

if 0 < α ≤ 1− ΓG(nq)

Nǫ,q =
⌈

log ǫ
log(1−q)

⌉

otherwise.
.

jos2008.tex; 20/12/2007; 15:22; p.20
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EMCTα(E ) variants to limit worst case cost

Let Nε,q,α =


⌈

log ε
log(1−qαΓG (nq))

⌉
if 0 < α ≤ 1− ΓG (nq)

Nε,q =
⌈

log ε
log(1−q)

⌉
otherwise.

Theorem (Probabilistic certification by EMCTα(E ))

A(E , ε) : Nε,q,α calls to EMCTα(E )

Expected cost per call : CG = dα
n

∑
T∈G |G≤(T)|e

On average W C
1 ≤ α

Nε,q,α

n W∞
∑

T∈G

∣∣G≤(T)
∣∣ and W C

∞ = O(W∞)
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EMCTα(E ) variants to limit worst case cost

Impact of α on Nε,q,α (with ε = 5% and q = 1%)
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Certification algorithms comparison
23

Table II. Comparison of the certification algorithms dealing with tasks dependencies.

Test T : MCT §4 EMCT §5.2 EMCTα §5.3 EMCT 1 §5.4

#T detected
faulty

nI ≥
⌈

(d−1)nF

dh−1

⌉

nq = ⌈n.q⌉ nqαΓT(nq) or
nq

nqΓT(nq)

Perror (T ) 1− ΓG(nq) ≤

1−
⌈

q
(d−1)
dh−1

⌉

1− q 1− qαΓT(nq)
or 1− q

1− qΓT(nq)

NT :
convergence to ǫ

⌈

log ǫ
log(1−ΓG(nq))

⌉ ⌈

log ǫ
log(1−q)

⌉ ⌈

log ǫ
log(1−qαΓG(nq))

⌉

or
⌈

log ǫ

log(1−q)

⌉

⌈

log ǫ
log(1−qΓG(nq))

⌉

exact CG 1 |G≤(T)| ⌈α|G≤(T)|⌉ 1

avg. CG

(n tasks,

height h)

G 1 |G≤|
⌈

α|G≤|
⌉

1

Tree 1 h + 1 =
Θ(log n)

⌈α(h + 1)⌉ =
Θ(α log n)

1

Fork-
Join

1 h + 3 =
Θ(log n)

⌈α(h + 3)⌉ =
Θ(α log n)

1

WC
1 :

NT calls
to T

G NMCT W∞ NTW∞|G≤| αNTW∞|G≤| NEMCT 1

W∞

Tree NMCT W∞ O(hW∞) O(αhW∞) NEMCT 1

W∞

Fork-
Join

NMCT W∞ O(hW∞) O(αhW∞) NEMCT 1

W∞

WC
∞ O(W∞) O(W∞) O(W∞) O(W∞)

based on MCT is only able to detect with certainty initiators
while in EMCT , any falsified task in the re-executed predecessor
subgraph is always found, if it exists;

− the probability of error when applying the test i.e. the probability
for the considered test to answer CORRECT while G is massively
attacked with ratio q;

− the convergence to ǫ, noted NT , i.e. the minimal number of in-
dependent invocations of the specified test required to certify an
execution E with error probability bound by ǫ, therefore leading to
the complete certification algorithm A(E, ǫ). This value depends
on the probability of error contributed by a single invocation of
the considered test;

− the exact and average number CG of calls to verifiers needed by a
single evocation of the considered test;

jos2008.tex; 20/12/2007; 15:22; p.23
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Conclusion

Result-checking for distributed computations

Approach based on macro-dataflow analysis
↪→ deals with task dependencies

“No” hypothesis on attacker behaviour

Monte-carlo certification [E]MCT[X]
↪→ low overhead for recursive/Fork-Join programs
↪→ high overhead in general (−→ EMCTα(E) and EMCTK (E) )
↪→ validation on medical application (not presented here)

Perspective/Current work

Atlantic city extension
↪→ verifier not so accurate
↪→ if test fails, probability to stand below the tolerance threshold ?

Dealing with nF < dn.qe
↪→ Algorithm-Based Fault-Tolerance (ABFT)

27 / 31Result Certification Against Massive Attacks in Distributed Computations



Context Execution and certification model Independent case Dependent case Conclusion

Thanks for your attention...

Questions ?
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Proof of concept

(0) To store
DB1

Storage grid

DB2 DB3

Computing grid
D2

(1) To analyse

D1

(2) score computation

(3) Results

Breast cancer lesions detection in mammogrames [Varrette& al.06]

statistical comparison on a database of studied cases
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Experimental protocol

(8) The first 10% entries of T are sent back to the user  
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(3) Using metadata of I, index of n images are selected on the storage grid    

(2) A new mammogram I is send for analyse    

(4) Farmanager submits n comparison jobs to hostmanagers 
Input images are anonymized

(5) Scores are certified to be correct using result−checking algorithms

(1) User authenticate to the front−end server

(6) Farmanager submits sorting jobs to hostmanagers

(7) The sorting process is certified correct using result−checking algorithms 

is produced

A table T containing sorted scores with pointers to corresponding images 
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Experimentations

Deployment on Grid5000 ; ε = 0.001, q = 0.01 (Nε,q = 688)

Time required to deploy the images on the grid
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Experimentations

Deployment on Grid5000 ; ε = 0.001, q = 0.01 (Nε,q = 688)

Scores computation + certification : 1000 tasks
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End of phase 3 (EMCT certification on the checkpoint server)
End of phase 2 (distributed score computation)
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Experimentations

Deployment on Grid5000 ; ε = 0.001, q = 0.01 (Nε,q = 688)

Scores computation + certification : 10000 tasks
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End of phase 3 (EMCT certification on the checkpoint server)
End of phase 2 (distributed score computation)
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Experimentations

Deployment on Grid5000 ; ε = 0.001, q = 0.01 (Nε,q = 688)

Scores computation + certification : 100000 tasks
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End of phase 3 (EMCT certification on the checkpoint server)
End of phase 2 (distributed score computation)
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