Result Certification Against Massive Attacks in Distributed Computations

<u>Sébastien Varrette¹</u>, Jean-Louis Roch² and Axel Krings³

 ¹ Computer Science and Commnications Unit, University of Luxembourg, Luxembourg ² MOAIS team, LIG Laboratory, Grenoble, France
³ Department of Computer Science, University of Idaho, Moscow, USA

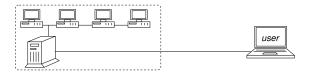
Re-Trust 2008, Trento (Italy), October 15st, 2008

Execution and certification model

3 Monte-Carlo certification of independent tasks

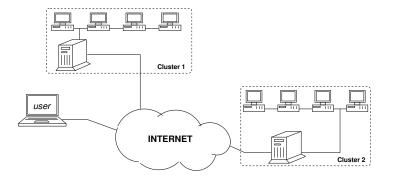
4 Monte-Carlo certification of dependent tasks

Large scale computing platforms



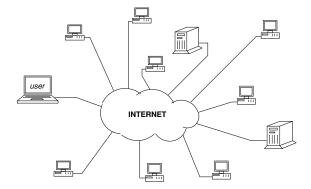
Large scale computing platforms

• Computing grids [Foster&al.97] : Grid5000, Globus etc.



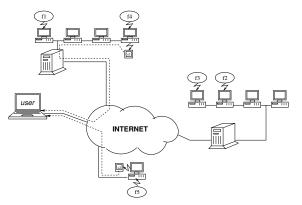
Large scale computing platforms

• « Desktop grid » : Seti@Home, BOINC, XtremWeb etc.



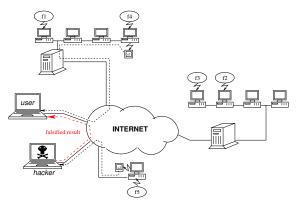
Result-Checking issue

• Falsified result : malicious act or not (cf. Seti@HOME [Molnar00])



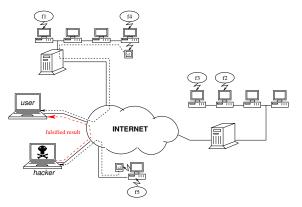
Result-Checking issue

• Falsified result : malicious act or not (cf. Seti@HOME [Molnar00])



Result-Checking issue

• Falsified result : malicious act or not (cf. Seti@HOME [Molnar00])



• Software Counter-measures : prevent before / control after

State of the art

• Essentially devoted to batchs of independent tasks

Specific approach : Simple checker [Blum97]

• check a [cheap] post-condition over computed results

$$\hookrightarrow$$
 DLP avec $|G| = n : L_n \left[\frac{1}{3}, \left(\frac{64}{9}\right)^{\frac{1}{3}}\right]$ – Simple checker $\mathcal{O}(\log n)$

• The most efficient approach... if possible !

State of the art

• Essentially devoted to batchs of independent tasks

Specific approach : Simple checker [Blum97]

• check a [cheap] post-condition over computed results

$$\hookrightarrow$$
 DLP avec $|G| = n : L_n \left[\frac{1}{3}, \left(\frac{64}{9}\right)^{\frac{1}{3}}\right]$ – Simple checker $\mathcal{O}(\log n)$

• The most efficient approach... if possible !

General approach : duplication

- Direct certification of the batch with sequential tests [Germain-Playez03]
- Batch reinforcement [Sarmenta03]
- In all case : attackers modelisation

State of the art

• Essentially devoted to batchs of independent tasks

Specific approach : Simple checker [Blum97]

• check a [cheap] post-condition over computed results

$$\hookrightarrow$$
 DLP avec $|G| = n : L_n \left[\frac{1}{3}, \left(\frac{64}{9}\right)^{\frac{1}{3}}\right]$ – Simple checker $\mathcal{O}(\log n)$

• The most efficient approach... if possible !

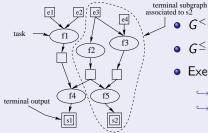
General approach : duplication

- Direct certification of the batch with sequential tests [Germain-Playez03]
- Batch reinforcement [Sarmenta03]
- In all case : attackers modelisation

\implies What about dependent tasks?

Execution model : macro-dataflow graph

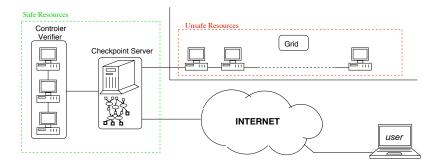
Abstract representation of a parallel execution P(i)



- $G^{<}(T)$: predecessors of T in G
- $G^{\leq}(T): G^{<}(T) \cup \{T\}$
- Execution engine : KAAPI

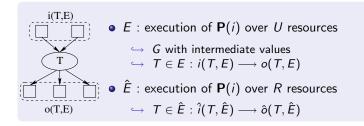
 - $\label{eq:comparable} \hookrightarrow \ C++ \ \text{library for high performance} \\ \text{parallel computing}$

Execution platform



- Resources partitionning $|R| \ll |U|$
- Reliable system for task re-execution

Impact of the faults (1)



Definition (execution state)

E is **correct** iff $E = \hat{E}$. Otherwise, *E* is **falsified**.

Task re-execution : compute $\hat{o}(T, E)$ from i(T, E), compare to o(T, E)

Impact of the faults (2)

Definition (Correct and Faulty task)

- Faulty task $T : o(T, E) \neq \hat{o}(T, E)$
 - $\, \hookrightarrow \,$ directly detected by controlers
 - \hookrightarrow correct task T : no task in $G^{\leq}(T)$ are faulty
- Falsified result : $o(T, E) \neq \hat{o}(T, \hat{E})$
 - \hookrightarrow hard to detect as $\hat{o}(T, \hat{E}) \neq \hat{o}(T, E)$
 - \hookrightarrow n_F falsified tasks

Monte-Carlo certification (1)

Definition (certification Monte-Carlo algorithm)

$$\mathcal{A}: (E, \varepsilon) \longrightarrow \begin{cases} \mathsf{CORRECT} \text{ (with error probability } \leq \varepsilon) \\ \mathsf{FALSIFIED} \text{ (with falsification proof)} \end{cases}$$

- Cf. Miller-Rabin
- Interests :
 - $\, \hookrightarrow \, \varepsilon \, \operatorname{fixed} \, \operatorname{by} \, \operatorname{the} \, \operatorname{user} \,$
 - \hookrightarrow a limited number of verifier calls (ideally o(n))
 - \hookrightarrow can be done in parallel on R !

Efficient detection of masive attack $(n_F \ge n_q = \lceil q.n \rceil)$

- $\,\hookrightarrow\,$ the application should tolerate a limited number of faults
- \hookrightarrow no assumption on attackers behaviour except n_F

Monte-Carlo certification (2)

Resources	avg. speed/proc	total speed
U	Πυ	Π_U^{tot}
R	Π_R	Π_R^{tot}

• Scheduling by on-line workstealing

$$\hookrightarrow$$
 execution (on U) : $\mathbf{W}_1 \gg \mathbf{W}_\infty$

 \hookrightarrow certification (on R) : W_1^C and W_∞^C

Theorem (Executing and Certification Time)

w.h.p :

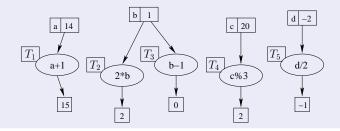
$$T_{EC} \leq \left[\frac{W_1}{\Pi_U^{tot}} + \mathcal{O}\left(\frac{W_\infty}{\Pi_U}\right)\right] + \left[\frac{W_1^C}{\Pi_R^{tot}} + \mathcal{O}\left(\frac{W_\infty^C}{\Pi_R}\right)\right]$$

Dependent case

Conclusion

Independent case

Correct execution :

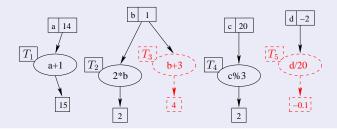


Dependent case

Conclusion

Independent case

Falsified execution :



Result Certification Against Massive Attacks in Distributed Computations 12 / 31

Monte-Carlo Test MCT(E)

Input: Execution *E* represented by *G* composed of independent tasks. **Output**: The correctness of *E* (FALSIFIED or CORRECT)

Uniformly choose one task T in G; // Re-execution of T on the R resources using the inputs i(T, E) $\hat{o}(T, E) \leftarrow \text{ReseacuteOnVerifier}(T, i(T, E));$ if $o(T, E) \neq \hat{o}(T, E)$ then return FALSIFIED; return CORRECT;

Theorem (Probabilistic certification by MCT(E))

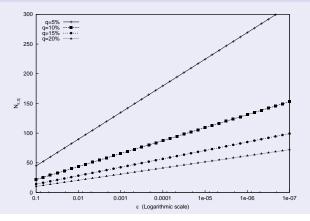
•
$$\mathcal{A}(E,\varepsilon)$$
 : $N_{\varepsilon,q} = \lceil \frac{\log \varepsilon}{\log(1-q)} \rceil$ calls to $MCT(E)$

•
$$W_1^C \leq N_{\varepsilon,q} W_\infty$$
 and $W_\infty^C = W_\infty$

•
$$T_{EC} \leq \frac{W_1}{\prod_U^{tot}} + \mathcal{O}\left(\frac{W_\infty}{\Pi_U}\right) + \frac{N_{\varepsilon,q}W_\infty}{\Pi_R^{tot}} + \mathcal{O}\left(\frac{W_\infty}{\Pi_R}\right)$$

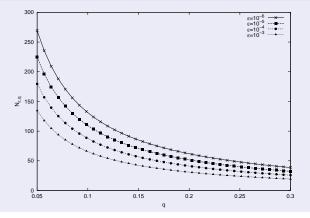
Independent case

Impact of ε over $N_{\varepsilon,q}$

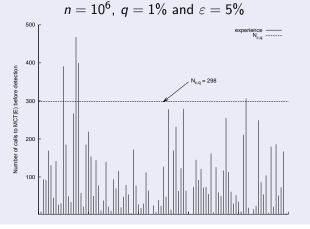


Independent case

Impact of q over $N_{\varepsilon,q}$



Non-detection illustration



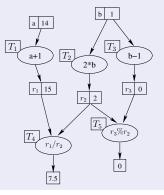
Result Certification Against Massive Attacks in Distributed Computations 16 / 31

(Dependent case)

Conclusion

Dependent case

Correct execution :

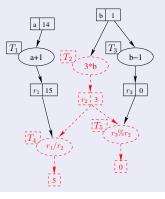


(Dependent case)

Conclusion

Dependent case

Falsified execution :



Dependent case

•
$$\mathbf{n}_{\mathbf{I}}$$
 initiators $\in \mathcal{I}(F)$:
$$\begin{cases} i(T, E) = \hat{i}(T, \hat{E}) \\ o(T, E) \neq \hat{o}(T, \hat{E}) \end{cases}$$

 $\,\hookrightarrow\,$ falsified tasks you are sure to detect

•
$$\mathcal{P}(MCT(E) = CORRECT) \leq 1 - \frac{n_l}{n}$$

Theorem (Minimal number of initiators)

For G with height h, maximal out-degree d and $n_F \ge n_q = \lceil q.n \rceil$

$$n_l \ge q \left\lceil \frac{n(d-1)}{d^h-1} \right\rceil$$

Dependent case

Lemma (Initiators caracterization)

- $\mathcal{I}(F) = \{T_i \in F : F \cap G^{<}(T_i) = \emptyset\}$
- T is falsified $\iff G^{\leq}(T) \cap \mathcal{I}(F) \neq \emptyset$

Extended Monte-Carlo Test EMCT(E)

Input: Execution *E* represented by *G* composed of dependent tasks. **Output**: The correctness of *E* (FALSIFIED or CORRECT)

Uniformly choose one task T in G; // Re-execution of $G^{\leq}(T)$ on R to detect initiators forall $T_j \in G^{\leq}(T) / T_j$ as not yet been checked do $\hat{o}(T_j, E) \leftarrow \text{ReexecuteONVerifier}(T_j, i(T_j, E));$ if $o(T_j, E) \neq \hat{o}(T_j, E)$ then return FALSIFIED; end return CORRECT;

(Dependent case)

Conclusion

Dependent case

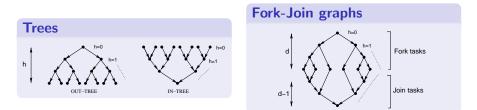
Theorem (Probabilistic certification by EMCT(E))

•
$$\mathcal{A}(E,\varepsilon)$$
 : $N_{\varepsilon,q} = \lceil \frac{\log \varepsilon}{\log(1-q)} \rceil$ calls to $EMCT(E)$

• Expected cost per call :
$$C_G = \frac{1}{n} \sum_{T \in G} |G^{\leq}(T)|$$

• Worst case :
$$W_1^{\mathcal{C}} = \Omega(W_1)$$
 and $W_{\infty}^{\mathcal{C}} = \Omega(W_{\infty})$

Dependent case on some specific graphs



Theorem (Trees and Fork-Join graphs certification) For G a tree or a Fork-Join graph with height h:

•
$$C_G \le h + 3$$

• $T_{EC} \le \frac{W_1}{\Pi_U^{tot}} + \mathcal{O}\left(\frac{W_\infty}{\Pi_U}\right) + \mathcal{O}\left(\frac{hW_\infty}{\Pi_R^{tot}}\right) + \mathcal{O}\left(\frac{W_\infty}{\Pi_R}\right)$

EMCT(E) variants to limit worst case cost

- EMCT_{α}(E) : check a proportion α of $G^{\leq}(T)$
- 2 $EMCT^{\kappa}(E)$: check min $(\kappa, |G^{\leq}(T)|)$ tasks in $G^{\leq}(T)$

Definition (Minimal number of initiators)

Let $k \leq n_F$ and $V \subset \mathcal{V}_t$.

• minimum number of initiators with respect to V and k:

$$\gamma_{V}(k) = \min |G^{\leq}(V) \cap \mathcal{I}(F)| \quad \text{for} \begin{cases} |F| \ge k \\ G^{\leq}(V) \cap \mathcal{I}(F) \neq \emptyset \end{cases}$$

• minimal initiator ratio : $\Gamma_V(k) = \frac{\gamma_V(k)}{|G \leq (V)|}$.

Note : $n_q \le n_F$ is the smallest number of falsified tasks $\implies \gamma_G(n_q)$ is the smallest n_I possible.

$EMCT_{\alpha}(E)$ variants to limit worst case cost

$EMCT_{\alpha}(E)$

Input: Execution E represented by G composed of dependent tasks. **Output:** The correctness of E (FALSIFIED or CORRECT)

Uniformly choose one task T in G; $n_{\alpha} \leftarrow \lceil \alpha | G^{\leq}(T) | \rceil$; //number of tasks to re-execute Define $\mathcal{T}_{\alpha} \subset G^{\leq}(T)$ composed of n_{α} tasks uniformly chosen in $G^{\leq}(T)$; // Re-execution of \mathcal{T}_{α} on R to detect initiators forall $T_j \in \mathcal{T}_{\alpha} / T_j$ as not yet been checked do $\hat{o}(T_j, E) \leftarrow \text{ReexecuteOnVerifier}(T_j, i(T_j, E))$; if $o(T_j, E) \neq \hat{o}(T_j, E)$ then return FALSIFIED; end return CORRECT;

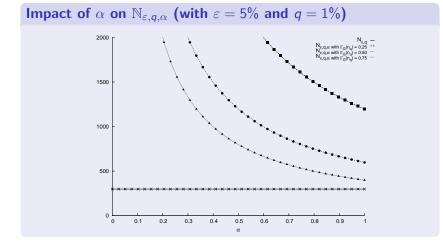
$EMCT_{\alpha}(E)$ variants to limit worst case cost

• Let
$$N_{\varepsilon,q,\alpha} = \begin{cases} \left\lceil \frac{\log \varepsilon}{\log(1-q\alpha\Gamma_G(n_q))} \right\rceil & \text{if } 0 < \alpha \leq 1 - \Gamma_G(n_q) \\ N_{\varepsilon,q} = \left\lceil \frac{\log \varepsilon}{\log(1-q)} \right\rceil & \text{otherwise.} \end{cases}$$

Theorem (Probabilistic certification by $EMCT_{\alpha}(E)$)

- $\mathcal{A}(E,\varepsilon)$: $N_{\varepsilon,q,lpha}$ calls to $EMCT_{lpha}(E)$
- Expected cost per call : $C_G = \left\lceil \frac{\alpha}{n} \sum_{T \in G} |G^{\leq}(T)| \right\rceil$
- On average $W_1^C \leq \alpha \frac{N_{\varepsilon,q,\alpha}}{n} W_{\infty} \sum_{T \in G} |G^{\leq}(T)|$ and $W_{\infty}^C = \mathcal{O}(W_{\infty})$

$EMCT_{\alpha}(E)$ variants to limit worst case cost



Certification algorithms comparison

Te	st \mathcal{T} :	MCT §4	EMCT §5.2	$EMCT_{\alpha}$ §5.3	$EMCT^1$ §5.4
#T detect faulty	ted	$\left\lceil \frac{n_I \ge}{\frac{(d-1)n_F}{d^h - 1}} \right\rceil$	$n_q = \lceil n.q \rceil$	$n_q \alpha \Gamma_T(n_q)$ or n_q	$n_q \Gamma_T(n_q)$
\mathcal{P}_{error} (T)	$\begin{array}{l} 1-\Gamma_G(n_q)\leq\\ 1-\left\lceil q\frac{(d-1)}{d^h-1}\right\rceil\end{array}$	1-q	$\begin{array}{c} 1 - q \alpha \Gamma_T(n_q) \\ \text{or } 1 - q \end{array}$	$1 - q\Gamma_T(n_q)$
N^T : convergence		$\left\lceil \frac{\log \epsilon}{\log(1 - \Gamma_G(n_q))} \right\rceil$	$\left\lceil \frac{\log \epsilon}{\log(1-q)} \right\rceil$	$ \begin{bmatrix} \frac{\log \epsilon}{\log(1-q\alpha\Gamma_G(n_q))} \\ \text{or } \left\lceil \frac{\log \epsilon}{\log(1-q)} \right\rceil $	$\left\lceil \frac{\log \epsilon}{\log(1 - q \Gamma_G(n_q))} \right\rceil$
exact C	C_G	1	$ G^{\leq}(T) $	$\lceil \alpha G^{\leq}(T) \rceil$	1
avg. C_G	G	1	$ G^{\leq} $	$\left[\alpha \overline{G^{\leq}} \right]$	1
(n tasks, height h)	Tree	1	$h + 1 = \Theta(\log n)$	$\lceil \alpha(h + 1) \rceil = \Theta(\alpha \log n)$	1
	Fork- Join	1	$\begin{array}{ccc} h &+& 3 &=\\ \Theta(\log n) & \end{array}$	$ \begin{array}{l} \left\lceil \alpha(h + 3) \right\rceil &= \\ \Theta(\alpha \log n) \end{array} $	1
W_1^C :	G	$N^{MCT}W_{\infty}$	$N^T W_{\infty} \overline{G^{\leq}} $	$\alpha N^T W_{\infty} \overline{ G^{\leq} }$	$N^{EMCT^1}W_{\infty}$
N^T calls to T	Tree Fork- Join	$\frac{N^{MCT}W_{\infty}}{N^{MCT}W_{\infty}}$	$\frac{\mathcal{O}(hW_{\infty})}{\mathcal{O}(hW_{\infty})}$	$\frac{\mathcal{O}(\alpha h W_{\infty})}{\mathcal{O}(\alpha h W_{\infty})}$	$\frac{N^{EMCT^{1}}W_{\infty}}{N^{EMCT^{1}}W_{\infty}}$
W^C_∞		$\mathcal{O}(W_{\infty})$	$\mathcal{O}(W_{\infty})$	$\mathcal{O}(W_{\infty})$	$\mathcal{O}(W_{\infty})$

Conclusion

Result-checking for distributed computations

- Approach based on macro-dataflow analysis
 - \hookrightarrow deals with task dependencies
- "No" hypothesis on attacker behaviour
- Monte-carlo certification [E]MCT[X]
 - \hookrightarrow low overhead for recursive/Fork-Join programs
 - \hookrightarrow high overhead in general ($\longrightarrow EMCT_{\alpha}(E)$ and $EMCT^{\kappa}(E)$)
 - \hookrightarrow validation on medical application (not presented here)

Perspective/Current work

- Atlantic city extension
 - \hookrightarrow verifier not so accurate
 - $\, \hookrightarrow \,$ if test fails, probability to stand below the tolerance threshold ?
- Dealing with $n_F < \lceil n.q \rceil$
 - \hookrightarrow Algorithm-Based Fault-Tolerance (ABFT)

Dependent case

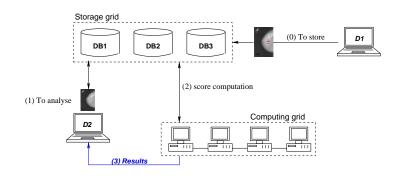
Conclusion

Thanks for your attention...

Questions?

Result Certification Against Massive Attacks in Distributed Computations 28 / 31

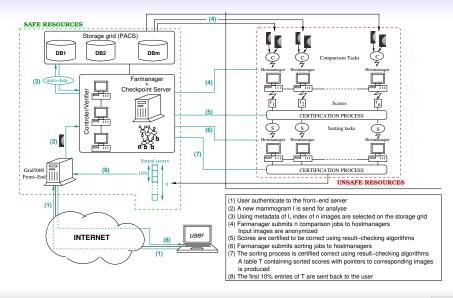
Proof of concept



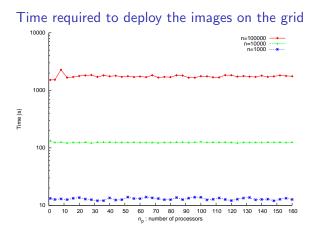
Breast cancer lesions detection in mammogrames [Varrette& al.06]

• statistical comparison on a database of studied cases

Experimental protocol



Deployment on Grid5000; $\varepsilon = 0.001$, q = 0.01 ($N_{\varepsilon,q} = 688$)



Result Certification Against Massive Attacks in Distributed Computations 31 / 31

