
Context Execution and certification model Independent case Dependent case Conclusion

Result Certification Against Massive
Attacks in Distributed Computations

Sébastien Varrette1, Jean-Louis Roch2 and Axel Krings3

1 Computer Science and Commnications Unit, University of Luxembourg, Luxembourg
2 MOAIS team, LIG Laboratory, Grenoble, France

3 Department of Computer Science, University of Idaho, Moscow, USA

Re-Trust 2008, Trento (Italy), October 15st, 2008

1 / 31Result Certification Against Massive Attacks in Distributed Computations

Context Execution and certification model Independent case Dependent case Conclusion

Summary

1 Context & Motivations

2 Execution and certification model

3 Monte-Carlo certification of independent tasks

4 Monte-Carlo certification of dependent tasks

5 Conclusion

2 / 31Result Certification Against Massive Attacks in Distributed Computations

Context Execution and certification model Independent case Dependent case Conclusion

Large scale computing platforms

[Beowulf] Clusters : Chaos.lu

user

3 / 31Result Certification Against Massive Attacks in Distributed Computations

Context Execution and certification model Independent case Dependent case Conclusion

Large scale computing platforms

Computing grids [Foster&al.97] : Grid5000, Globus etc.

Cluster 2

INTERNET

user

Cluster 1

3 / 31Result Certification Against Massive Attacks in Distributed Computations

Context Execution and certification model Independent case Dependent case Conclusion

Large scale computing platforms

« Desktop grid » : Seti@Home, BOINC, XtremWeb etc.

INTERNET

user

3 / 31Result Certification Against Massive Attacks in Distributed Computations

Context Execution and certification model Independent case Dependent case Conclusion

Result-Checking issue

Falsified result : malicious act or not (cf. Seti@HOME [Molnar00])

f4

INTERNET

f2f3

user

s1

f5

s2

f1

Software Counter-measures : prevent before / control after

4 / 31Result Certification Against Massive Attacks in Distributed Computations

Context Execution and certification model Independent case Dependent case Conclusion

Result-Checking issue

Falsified result : malicious act or not (cf. Seti@HOME [Molnar00])

hacker

INTERNET

f2f3

user

s1

f5

s2

f1 f4

falsified result

Software Counter-measures : prevent before / control after

4 / 31Result Certification Against Massive Attacks in Distributed Computations

Context Execution and certification model Independent case Dependent case Conclusion

Result-Checking issue

Falsified result : malicious act or not (cf. Seti@HOME [Molnar00])

hacker

INTERNET

f2f3

user

s1

f5

s2

f1 f4

falsified result

Software Counter-measures : prevent before / control after

4 / 31Result Certification Against Massive Attacks in Distributed Computations

Context Execution and certification model Independent case Dependent case Conclusion

State of the art

Essentially devoted to batchs of independent tasks

Specific approach : Simple checker [Blum97]

check a [cheap] post-condition over computed results

↪→ DLP avec |G | = n : Ln

h
1
3
,
`

64
9

´ 1
3

i
– Simple checker O(log n)

The most efficient approach... if possible !

General approach : duplication

Direct certification of the batch with sequential tests [Germain-Playez03]

Batch reinforcement [Sarmenta03]

In all case : attackers modelisation

=⇒ What about dependent tasks ?

5 / 31Result Certification Against Massive Attacks in Distributed Computations

Context Execution and certification model Independent case Dependent case Conclusion

State of the art

Essentially devoted to batchs of independent tasks

Specific approach : Simple checker [Blum97]

check a [cheap] post-condition over computed results

↪→ DLP avec |G | = n : Ln

h
1
3
,
`

64
9

´ 1
3

i
– Simple checker O(log n)

The most efficient approach... if possible !

General approach : duplication

Direct certification of the batch with sequential tests [Germain-Playez03]

Batch reinforcement [Sarmenta03]

In all case : attackers modelisation

=⇒ What about dependent tasks ?

5 / 31Result Certification Against Massive Attacks in Distributed Computations

Context Execution and certification model Independent case Dependent case Conclusion

State of the art

Essentially devoted to batchs of independent tasks

Specific approach : Simple checker [Blum97]

check a [cheap] post-condition over computed results

↪→ DLP avec |G | = n : Ln

h
1
3
,
`

64
9

´ 1
3

i
– Simple checker O(log n)

The most efficient approach... if possible !

General approach : duplication

Direct certification of the batch with sequential tests [Germain-Playez03]

Batch reinforcement [Sarmenta03]

In all case : attackers modelisation

=⇒ What about dependent tasks ?

5 / 31Result Certification Against Massive Attacks in Distributed Computations

Context Execution and certification model Independent case Dependent case Conclusion

Execution model : macro-dataflow graph

Abstract representation of a parallel execution P(i)

s1

f1

e1

f5

e2

task

terminal subgraph

f4
terminal output

f3
f2

e3
e4

s2

associated to s2

G<(T) : predecessors of T in G

G≤(T) : G<(T) ∪ {T}
Execution engine : Kaapi

↪→ http://kaapi.gforge.inria.fr/

↪→ C++ library for high performance
parallel computing

6 / 31Result Certification Against Massive Attacks in Distributed Computations

http://kaapi.gforge.inria.fr/

Context Execution and certification model Independent case Dependent case Conclusion

Execution platform

Grid

INTERNET
user

Unsafe Resources
Safe Resources

Verifier
Controler

Checkpoint Server

Resources partitionning |R| � |U|

Reliable system for task re-execution

7 / 31Result Certification Against Massive Attacks in Distributed Computations

Context Execution and certification model Independent case Dependent case Conclusion

Impact of the faults (1)

o(T,E)

T

i(T,E)

E : execution of P(i) over U resources

↪→ G with intermediate values
↪→ T ∈ E : i(T, E) −→ o(T, E)

Ê : execution of P(i) over R resources

↪→ T ∈ Ê : î(T, Ê) −→ ô(T, Ê)

Definition (execution state)

E is correct iff E = Ê . Otherwise, E is falsified.

Task re-execution : compute ô(T,E) from i(T,E), compare to o(T,E)

8 / 31Result Certification Against Massive Attacks in Distributed Computations

Context Execution and certification model Independent case Dependent case Conclusion

Impact of the faults (2)

Definition (Correct and Faulty task)

Faulty task T : o(T,E) 6= ô(T,E)

↪→ directly detected by controlers
↪→ correct task T : no task in G≤(T) are faulty

Falsified result : o(T,E) 6= ô(T, Ê)

↪→ hard to detect as ô(T, Ê) 6= ô(T, E)
↪→ nF falsified tasks

9 / 31Result Certification Against Massive Attacks in Distributed Computations

Context Execution and certification model Independent case Dependent case Conclusion

Monte-Carlo certification (1)

Definition (certification Monte-Carlo algorithm)

A : (E , ε) −→

{
CORRECT (with error probability ≤ ε)

FALSIFIED (with falsification proof)

Cf. Miller-Rabin

Interests :

↪→ ε fixed by the user
↪→ a limited number of verifier calls (ideally o(n))
↪→ can be done in parallel on R !

Efficient detection of masive attack (nF ≥ nq = dq.ne)
↪→ the application should tolerate a limited number of faults

↪→ no assumption on attackers behaviour except nF

10 / 31Result Certification Against Massive Attacks in Distributed Computations

Context Execution and certification model Independent case Dependent case Conclusion

Monte-Carlo certification (2)

Resources avg. speed/proc total speed

U ΠU Πtot
U

R ΠR Πtot
R

Scheduling by on-line workstealing

↪→ execution (on U) : W1 � W∞
↪→ certification (on R) : W C

1 and W C
∞

Theorem (Executing and Certification Time)

w.h.p :

TEC ≤
[

W1

Πtot
U

+O
(

W∞
ΠU

)]
+

[
W C

1

Πtot
R

+O
(

W C
∞

ΠR

)]

11 / 31Result Certification Against Massive Attacks in Distributed Computations

Context Execution and certification model Independent case Dependent case Conclusion

Independent case

Correct execution :

a 14

2*b
b−1 d/2

c%3

c 20
d −2b 1

15
2

0
2

−1

a+1
T1 T3

T4

T5

T2

12 / 31Result Certification Against Massive Attacks in Distributed Computations

Context Execution and certification model Independent case Dependent case Conclusion

Independent case

Falsified execution :

a 14

c%3

c 20
d −2b 1

15
2 2

2*b

−0.14

b+3 d/20a+1 T2 T4

T5T1 T3

12 / 31Result Certification Against Massive Attacks in Distributed Computations

Context Execution and certification model Independent case Dependent case Conclusion

Independent case

Monte-Carlo Test MCT (E)

10

4. Monte-Carlo certification of independent tasks

We first consider the case where all tasks in G are independent, as

illustrated in Fig 4. In this case, certification of tasks is equivalent to

certification of results.

a 14

2*b
b−1

b 1

15
2

0

a+1
T1 T3

T2

a 14
b 1

15
2

2*b

4

b+3a+1 T2

T1 T3

Figure 4. Correct and falsified execution of a parallel application composed of

three independent tasks.

Input: Execution E represented by G composed of independent tasks.

Output: The correctness of E (FALSIFIED or CORRECT)

Uniformly choose one task T in G;

// Re-execution of T on the R resources using the inputs i(T, E)

ô(T, E) ← ReexecuteOnVerifier(T, i(T, E));

if o(T, E) 6= ô(T, E) then
return FALSIFIED;

return CORRECT;

Figure 5. MCT algorithm: certification of independent tasks.

Fig 5 details the Monte-Carlo Test MCT initially presented in [26]

to detect if the execution E composed of independent tasks contains

forged tasks. Since all tasks in G are independent we always have

i(T,E) = î(T, Ê). If Algorithm MCT selects a forged task, then one

knows with certainty that the execution E has failed. However, if MCT

returns CORRECT, then one can only make conclusions based on the

probabilities of randomly selecting a falsified or non-falsified task. The

following lemma addresses these probabilities.

Lemma 2. Let E be an execution with n independent tasks, nF ≥ ⌈q.n⌉
of which have been forged. Then P (MCT = CORRECT) ≤ 1− q.

Proof. As nF ≥ nq in a falsified execution, the probability that MCT

chooses a forged task is
nF

n
. Then the probability that MCT returns

CORRECT is
n−nF

n
= 1− nF

n
≤ 1− q.

The theorem below gives a lower bound on the number of tasks to be

re-executed in the framework of MCT in order to achieve the specific ǫ

fixed by the user.

jos2008.tex; 20/12/2007; 15:22; p.10

Theorem (Probabilistic certification by MCT (E))

A(E , ε) : Nε,q = d log ε
log(1−q)e calls to MCT (E)

W C
1 ≤ Nε,qW∞ and W C

∞ = W∞

TEC ≤
W1

Πtot
U

+O
(

W∞

ΠU

)
+

Nε,qW∞

Πtot
R

+O
(

W∞

ΠR

)
13 / 31Result Certification Against Massive Attacks in Distributed Computations

Context Execution and certification model Independent case Dependent case Conclusion

Independent case

Impact of ε over Nε,q

0

50

100

150

200

250

300

1e-071e-061e-050.00010.0010.010.1

N
ε,

q

ε (Logarithmic scale)

q=5%
q=10%
q=15%
q=20%

14 / 31Result Certification Against Massive Attacks in Distributed Computations

Context Execution and certification model Independent case Dependent case Conclusion

Independent case

Impact of q over Nε,q

0

50

100

150

200

250

300

0.05 0.1 0.15 0.2 0.25 0.3

N
ε,

q

q

ε=10−6

ε=10−5

ε=10−4

ε=10−3

15 / 31Result Certification Against Massive Attacks in Distributed Computations

Context Execution and certification model Independent case Dependent case Conclusion

Independent case

Non-detection illustration

n = 106, q = 1% and ε = 5%

 100

 200

 300

 400

 500

N
um

be
r

of
 c

al
ls

 to
 M

C
T

(E
)

be
fo

re
 d

et
ec

tio
n

Nε,q = 298

experience
Nε,q

16 / 31Result Certification Against Massive Attacks in Distributed Computations

Context Execution and certification model Independent case Dependent case Conclusion

Dependent case

Correct execution :

b−1

b 1

2

0

7.5

0

15

a+1

a 14

2*b

T1

r3

T5

T4

r3%r2

r1/r2

T2

r2

r1

T3

17 / 31Result Certification Against Massive Attacks in Distributed Computations

Context Execution and certification model Independent case Dependent case Conclusion

Dependent case

Falsified execution :

b 1

0

0

15

3*b

3

5

a+1

a 14

b−1

r1

r1/r2

T1

r2

T3

T4

T2

T5

r3%r2

r3

17 / 31Result Certification Against Massive Attacks in Distributed Computations

Context Execution and certification model Independent case Dependent case Conclusion

Dependent case

nI initiators ∈ I(F) :

{
i(T,E) = î(T, Ê)

o(T,E) 6= ô(T, Ê)

↪→ falsified tasks you are sure to detect

P (MCT (E) = CORRECT) ≤ 1− nI

n

Theorem (Minimal number of initiators)

For G with height h, maximal out-degree d and nF ≥ nq = dq.ne

nI ≥ q

⌈
n(d − 1)

dh − 1

⌉

18 / 31Result Certification Against Massive Attacks in Distributed Computations

Context Execution and certification model Independent case Dependent case Conclusion

Dependent case

Lemma (Initiators caracterization)

I(F) = {Ti ∈ F : F ∩ G<(Ti) = ∅}

T is falsified ⇐⇒ G≤(T) ∩ I(F) 6= ∅

Extended Monte-Carlo Test EMCT (E) 17

Input: Execution E represented by G composed of dependent tasks.
Output: The correctness of E (FALSIFIED or CORRECT)

Uniformly choose one task T in G;
// Re-execution of G≤(T) on R to detect initiators
forall Tj ∈ G≤(T) / Tj as not yet been checked do

ô(Tj , E) ← ReexecuteOnVerifier(Tj, i(Tj , E));
if o(Tj , E) 6= ô(Tj , E) then

return FALSIFIED;
end

return CORRECT;

Figure 9. EMCT algorithm: certification of dependent tasks.

by the certification algorithm (i.e in G≥(Tj) ∩ G≤(T)). As nF ≥ q.n,
P (EMCT = CORRECT) ≤ n−nF

n
≤ 1 − q. The average number of

verifications is simply the average number of tasks in the predecessor
graph checked in EMCT . Note that once T is selected, the cost can be
specified exactly as |G≤(T)|.

Theorem 2 (Probabilistic certification using EMCT). Let E be an ex-
ecution with only dependent tasks and assume that E is either correct or
massively attacked with ratio q. ∀ǫ ∈]0, 1[, the number of independent
executions of algorithm EMCT sufficient to achieve a certification of
E with probability of error less than or equal to ǫ is Nǫ,q = ⌈ log ǫ

log(1−q)⌉.

Yet in the worst case, W C
1 = Ω(W1) and W C

∞ = Ω(W∞).

Proof. The demonstration relative to Nǫ,q is similar to the one described
for theorem 1. It then follows from lemma 7 that the certification cost
can be written W C

1 = Nǫ,qCG = Nǫ,q

n

∑

T∈G

∣

∣G≤(T)
∣

∣. This cost directly
depends on the underlying graph. In the worst case, the certification
performs a complete re-execution on R. This is the case for instance if
G is a chain of n unit tasks. In such context, the average number of

verifiers calls is CG =

∑

T∈G
|G≤(T)|
n

= n(n−1)
2n

= n−1
2 = Θ(W1) which

leads to W C
1 = Θ(W1). In addition, W C

∞ = W∞ on average.

The impact of parameters ǫ and q in EMCT on the number of
verifiers calls remains identical to MCT (see Fig 6).

If some graphs conduct to the worst-case cost during the certification
by EMCT with W C

1 = Θ(W1), there exist numerous graphs with
a much lower overhead. This is the case for instance with trees and
Fork-Join graphs as the next theorem states. Such graphs are common
in distributed computing as they typically represent parallel recursive
programs based on a Divide & Conquer strategy.

jos2008.tex; 20/12/2007; 15:22; p.17

19 / 31Result Certification Against Massive Attacks in Distributed Computations

Context Execution and certification model Independent case Dependent case Conclusion

Dependent case

Theorem (Probabilistic certification by EMCT (E))

A(E , ε) : Nε,q = d log ε
log(1−q)e calls to EMCT (E)

Expected cost per call : CG = 1
n

∑
T∈G |G≤(T)|

Worst case : W C
1 = Ω(W1) and W C

∞ = Ω(W∞)

20 / 31Result Certification Against Massive Attacks in Distributed Computations

Context Execution and certification model Independent case Dependent case Conclusion

Dependent case on some specific graphs

Trees

IN−TREE

h=0

h=1

h=0

h=1h

OUT−TREE

Fork-Join graphs

d−1

h=0

h=1
Fork tasks

Join tasks

d

Theorem (Trees and Fork-Join graphs certification)

For G a tree or a Fork-Join graph with height h :

CG ≤ h + 3

TEC ≤
W1

Πtot
U

+O
(

W∞

ΠU

)
+O

(
hW∞

Πtot
R

)
+O

(
W∞

ΠR

)

21 / 31Result Certification Against Massive Attacks in Distributed Computations

Context Execution and certification model Independent case Dependent case Conclusion

EMCT (E) variants to limit worst case cost

1 EMCTα(E) : check a proportion α of G≤(T)

2 EMCTK (E) : check min
(
K , |G≤(T)|

)
tasks in G≤(T)

Definition (Minimal number of initiators)

Let k ≤ nF and V ⊂ Vt .
• minimum number of initiators with respect to V and k :

γV (k) = min |G≤(V) ∩ I(F)| for

{
|F | ≥ k
G≤(V) ∩ I(F) 6= ∅

• minimal initiator ratio : ΓV (k) = γV (k)
|G≤(V)| .

Note : nq ≤ nF is the smallest number of falsified tasks
=⇒ γG (nq) is the smallest nI possible.

22 / 31Result Certification Against Massive Attacks in Distributed Computations

Context Execution and certification model Independent case Dependent case Conclusion

EMCTα(E) variants to limit worst case cost

EMCTα(E)20

Input: Execution E represented by G composed of dependent tasks.
Output: The correctness of E (FALSIFIED or CORRECT)

Uniformly choose one task T in G;
nα ← ⌈α|G≤(T)|⌉; //number of tasks to re-execute
Define Tα ⊂ G≤(T) composed of nα tasks uniformly chosen in G≤(T);
// Re-execution of Tα on R to detect initiators
forall Tj ∈ Tα / Tj as not yet been checked do

ô(Tj , E) ← ReexecuteOnVerifier(Tj, i(Tj , E));
if o(Tj , E) 6= ô(Tj , E) then

return FALSIFIED;
end

return CORRECT;

Figure 11. EMCTα algorithm: certification of dependent tasks.

Proof. The result of T is falsified iff there exists at least an initia-
tor in G≤(T). It follows that the probability that EMCTα returns
CORRECT is composed of (1) the probability p = 1 − nF

n
that the

result of T was indeed correct and (2) the probability that the re-
sult of T is falsified but none of the tasks in Tα where faulty. Then:
P (EMCTα = CORRECT) ≤ p + (1 − p)P(”no faulty tasks in Tα”).
Depending on the value of α, two cases are distinguished.

1. if |G≤(T)| − γT (nq) < nα ⇐⇒ α > 1 − ΓT (nq) then Tα ∩ I(F) 6= ∅
(recall that I(F) denotes the initiator set in G). In that case, Tα
contains at least one initiator, P(”no faulty tasks in Tα”) = 0 and
P (EMCTα = CORRECT) ≤ p ≤ 1− nF

n
≤ 1− q.

2. otherwise, α ≤ 1−ΓT (nq) and there is a probability that Tα contains
no initiator. Using lemma 5, P(”at least a task in Tα is faulty”) ≥
P(”at least an initiator in Tα”) ≥ αΓT (nF). Thus

P (EMCTα = CORRECT) ≤ p + (1− p) (1− αΓT (nF))

≤ 1− (1− p)αΓT (nF)

≤ 1−
nF

n
αΓT (nF) ≤ 1−

nq

n
αΓT (nF)

≤ 1− qαΓT (nF) ≤ 1− qαΓT (nq)

It is now possible to quantify the cost of EMCTα.

Theorem 4 (Probabilistic certification using EMCTα). Let E be an
execution with only dependent tasks and assume that E is either correct
or massively attacked with ratio q.

Let Nǫ,q,α =







⌈

log ǫ
log(1−qαΓG(nq))

⌉

if 0 < α ≤ 1− ΓG(nq)

Nǫ,q =
⌈

log ǫ
log(1−q)

⌉

otherwise.
.

jos2008.tex; 20/12/2007; 15:22; p.20

23 / 31Result Certification Against Massive Attacks in Distributed Computations

Context Execution and certification model Independent case Dependent case Conclusion

EMCTα(E) variants to limit worst case cost

Let Nε,q,α =


⌈

log ε
log(1−qαΓG (nq))

⌉
if 0 < α ≤ 1− ΓG (nq)

Nε,q =
⌈

log ε
log(1−q)

⌉
otherwise.

Theorem (Probabilistic certification by EMCTα(E))

A(E , ε) : Nε,q,α calls to EMCTα(E)

Expected cost per call : CG = dα
n

∑
T∈G |G≤(T)|e

On average W C
1 ≤ α

Nε,q,α

n W∞
∑

T∈G

∣∣G≤(T)
∣∣ and W C

∞ = O(W∞)

24 / 31Result Certification Against Massive Attacks in Distributed Computations

Context Execution and certification model Independent case Dependent case Conclusion

EMCTα(E) variants to limit worst case cost

Impact of α on Nε,q,α (with ε = 5% and q = 1%)

 0

 500

 1000

 1500

 2000

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

α

Nε,q
Nε,q,α with ΓG(nq) = 0.25
Nε,q,α with ΓG(nq) = 0.50
Nε,q,α with ΓG(nq) = 0.75

25 / 31Result Certification Against Massive Attacks in Distributed Computations

Context Execution and certification model Independent case Dependent case Conclusion

Certification algorithms comparison
23

Table II. Comparison of the certification algorithms dealing with tasks dependencies.

Test T : MCT §4 EMCT §5.2 EMCTα §5.3 EMCT 1 §5.4

#T detected
faulty

nI ≥
⌈

(d−1)nF

dh−1

⌉

nq = ⌈n.q⌉ nqαΓT(nq) or
nq

nqΓT(nq)

Perror (T) 1− ΓG(nq) ≤

1−
⌈

q
(d−1)
dh−1

⌉

1− q 1− qαΓT(nq)
or 1− q

1− qΓT(nq)

NT :
convergence to ǫ

⌈

log ǫ
log(1−ΓG(nq))

⌉ ⌈

log ǫ
log(1−q)

⌉ ⌈

log ǫ
log(1−qαΓG(nq))

⌉

or
⌈

log ǫ

log(1−q)

⌉

⌈

log ǫ
log(1−qΓG(nq))

⌉

exact CG 1 |G≤(T)| ⌈α|G≤(T)|⌉ 1

avg. CG

(n tasks,

height h)

G 1 |G≤|
⌈

α|G≤|
⌉

1

Tree 1 h + 1 =
Θ(log n)

⌈α(h + 1)⌉ =
Θ(α log n)

1

Fork-
Join

1 h + 3 =
Θ(log n)

⌈α(h + 3)⌉ =
Θ(α log n)

1

WC
1 :

NT calls
to T

G NMCT W∞ NTW∞|G≤| αNTW∞|G≤| NEMCT 1

W∞

Tree NMCT W∞ O(hW∞) O(αhW∞) NEMCT 1

W∞

Fork-
Join

NMCT W∞ O(hW∞) O(αhW∞) NEMCT 1

W∞

WC
∞ O(W∞) O(W∞) O(W∞) O(W∞)

based on MCT is only able to detect with certainty initiators
while in EMCT , any falsified task in the re-executed predecessor
subgraph is always found, if it exists;

− the probability of error when applying the test i.e. the probability
for the considered test to answer CORRECT while G is massively
attacked with ratio q;

− the convergence to ǫ, noted NT , i.e. the minimal number of in-
dependent invocations of the specified test required to certify an
execution E with error probability bound by ǫ, therefore leading to
the complete certification algorithm A(E, ǫ). This value depends
on the probability of error contributed by a single invocation of
the considered test;

− the exact and average number CG of calls to verifiers needed by a
single evocation of the considered test;

jos2008.tex; 20/12/2007; 15:22; p.23

26 / 31Result Certification Against Massive Attacks in Distributed Computations

Context Execution and certification model Independent case Dependent case Conclusion

Conclusion

Result-checking for distributed computations

Approach based on macro-dataflow analysis
↪→ deals with task dependencies

“No” hypothesis on attacker behaviour

Monte-carlo certification [E]MCT[X]
↪→ low overhead for recursive/Fork-Join programs
↪→ high overhead in general (−→ EMCTα(E) and EMCTK (E))
↪→ validation on medical application (not presented here)

Perspective/Current work

Atlantic city extension
↪→ verifier not so accurate
↪→ if test fails, probability to stand below the tolerance threshold ?

Dealing with nF < dn.qe
↪→ Algorithm-Based Fault-Tolerance (ABFT)

27 / 31Result Certification Against Massive Attacks in Distributed Computations

Context Execution and certification model Independent case Dependent case Conclusion

Thanks for your attention...

Questions ?

28 / 31Result Certification Against Massive Attacks in Distributed Computations

Context Execution and certification model Independent case Dependent case Conclusion

Proof of concept

(0) To store
DB1

Storage grid

DB2 DB3

Computing grid
D2

(1) To analyse

D1

(2) score computation

(3) Results

Breast cancer lesions detection in mammogrames [Varrette& al.06]

statistical comparison on a database of studied cases

29 / 31Result Certification Against Massive Attacks in Distributed Computations

Context Execution and certification model Independent case Dependent case Conclusion

Experimental protocol

(8) The first 10% entries of T are sent back to the user

DB1 DB2 DBm

Storage grid (PACS)

meta­data

Checkpoint Server
+

Farmanager

C
o
n
tr

o
le

r/
V

e
ri
fi
e
r

10%

Sorted scores

n

INTERNET user

C C

Hostmanager Hostmanager Hostmanager

C

S S S

CERTIFICATION PROCESS

Hostmanager Hostmanager Hostmanager

r2r1 rn

Comparison Tasks

Sorting tasks

Scores

CERTIFICATION PROCESS

UNSAFE RESOURCES

SAFE RESOURCES

Front−End

Grid5000

(1)

(8)

(1)

(2)

(8)

(3)

(4)

(4)

(5)

(6)

(7)

(3) Using metadata of I, index of n images are selected on the storage grid

(2) A new mammogram I is send for analyse

(4) Farmanager submits n comparison jobs to hostmanagers
Input images are anonymized

(5) Scores are certified to be correct using result−checking algorithms

(1) User authenticate to the front−end server

(6) Farmanager submits sorting jobs to hostmanagers

(7) The sorting process is certified correct using result−checking algorithms

is produced

A table T containing sorted scores with pointers to corresponding images

30 / 31Result Certification Against Massive Attacks in Distributed Computations

Context Execution and certification model Independent case Dependent case Conclusion

Experimentations

Deployment on Grid5000 ; ε = 0.001, q = 0.01 (Nε,q = 688)

Time required to deploy the images on the grid

 10

 100

 1000

 10000

 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160

T
im

e
(s

)

np : number of processors

n=100000
n=10000

n=1000

31 / 31Result Certification Against Massive Attacks in Distributed Computations

Context Execution and certification model Independent case Dependent case Conclusion

Experimentations

Deployment on Grid5000 ; ε = 0.001, q = 0.01 (Nε,q = 688)

Scores computation + certification : 1000 tasks

 0

 50

 100

 150

 200

 250

 300

 350

 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160

T
im

e
(s

)

np : number of processeurs

End of phase 3 (EMCT certification on the checkpoint server)
End of phase 2 (distributed score computation)

31 / 31Result Certification Against Massive Attacks in Distributed Computations

Context Execution and certification model Independent case Dependent case Conclusion

Experimentations

Deployment on Grid5000 ; ε = 0.001, q = 0.01 (Nε,q = 688)

Scores computation + certification : 10000 tasks

 0

 500

 1000

 1500

 2000

 2500

 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160

T
im

e
(s

)

np : number of processeurs

End of phase 3 (EMCT certification on the checkpoint server)
End of phase 2 (distributed score computation)

31 / 31Result Certification Against Massive Attacks in Distributed Computations

Context Execution and certification model Independent case Dependent case Conclusion

Experimentations

Deployment on Grid5000 ; ε = 0.001, q = 0.01 (Nε,q = 688)

Scores computation + certification : 100000 tasks

 0

 5000

 10000

 15000

 20000

 25000

 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160

T
im

e
(s

)

np : number of processeurs

End of phase 3 (EMCT certification on the checkpoint server)
End of phase 2 (distributed score computation)

31 / 31Result Certification Against Massive Attacks in Distributed Computations

	Context & Motivations
	Execution and certification model
	Monte-Carlo certification of independent tasks
	Monte-Carlo certification of dependent tasks
	Conclusion

