Models of Attack and Defense

Christian Collberg

University of Arizona



Models of Attack—and Defense

Christian Collberg

University of Arizona



Models of Attack—and m

Christian Collberg

University of Arizona



Surreptitious Software — Problems & Techniques

Problem Technique




Surreptitious Software — Problems & Techniques

Problem Technique

Software Piracy

[



Surreptitious Software — Problems & Techniques

Problem Technique

Software Piracy

Tampering




Surreptitious Software — Problems & Techniques

Problem Technique

Software Piracy

i

Tampering

Reverse Engineering

myCoolAlg(){
) e




Surreptitious Software — Problems & Techniques

Problem Technique
Software Piracy Watermarking
> |Bob's!
Tampering

[

Reverse Engineering

myCoolAlg(){
) e




Surreptitious Software — Problems & Techniques

Problem Technique
Software Piracy Watermarking
> |Bob's!
Tampering Tamperproofing
‘ if (tampered)
E> KillProg();

Reverse Engineering

myCoolAlg(){
) e




Surreptitious Software — Problems & Techniques

Problem Technique
Software Piracy Watermarking
> |Bob's!
Tampering Tamperproofing
‘ if (tampered)
E> KillProg();

Reverse Engineering Obfuscation

myCoolAlg(){ l::>
) e




Surreptitious Software — Problems & Techniques

Problem

Technique

Software Piracy

Tampering

Reverse Engineering

myCoolAlg(){
) e

[ Jw®

[

o

Watermarking

Bob' s!

Tamperproofing

if (tampered)

KillProg();

Obfuscation

@ Techniques are code transformations.



Surreptitious Software — Problems & Techniques

Problem Technique
Software Piracy Watermarking
> |Bob's!
Tampering Tamperproofing
if (tampered)
E> KillProg();
Reverse Engineering Obfuscation
myCoolAlg(){ l::>
) es

@ Techniques are code transformations.

@ Tools compile unprotected programs to protected programs.
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@ Observations:
© many software protection algorithms use similar
transformations.
@ protection schemes in the natural world seem to use similar
transformations.
o Conjectures:
© protection in the natural world can teach us something about
protection in our artificial world.
@ there is a finite number of transformations.
@ Program:

o identify a set of primitives that describe and classify software
protection algorithms.
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@ We want a model that

© helps us analyze published algorithms,
@ serves as a design pattern for future algorithms.

o This talk:
@ Model notation:
@ The primitives of the model,
© Examples from biology, history, and computing;
@ Discussion (useful? complete?).



Model notation

The model notation consists of
@ Frames

@ Properties

© Transformations

@ Demons



Model notation

The model notation consists of
@ Frames

@ Properties

© Transformations

@ Demons

@ Frames are a knowledge representation device used in Al.



Model notation

The model notation consists of
@ Frames

@ Properties

© Transformations

@ Demons

@ Frames are a knowledge representation device used in Al.

o Basic idea: Frame-to-frame transformations represent
transformations from unprotected to protected universes.
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Frames represent a universe of object.
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Frames

Frame slots describe object properties.
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Frames

Frames can contain other frames.

[ name:"Alice"J

Alice

brand="Prada"

color="brown"
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@ Protection strategies: functions mapping frames to frames.
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@ Protection strategies: functions mapping frames to frames.

O

Universe
Sand  Turtle
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Universe
Sand FEgg Turtle

@ Defense-in-depth: Layer protection schemes using function
composition.



Demons

@ Slots can have demons which fire under the right
circumstances.
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Primitives

advertise
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detect-respond
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dynamic

x — fx — f(fx) — f(f(#&))...



compose

(f o g)(x) = f(g(x))



Primitive #1: Cover

@ Fundamental way of protecting something: cover it with
another object!
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L5 |~

@ Add decoy objects to force an attacker to consider more
items.

@ Add a clone of an object to force an attacker to destroy both
copies.



The Duplicate Primitive — Biology

California newt




The Duplicate Primitive — Biology

@ clone: 7-30 eggs;

California newt




The Duplicate Primitive — Biology

@ clone: 7-30 eggs;

@ cover: Eggs covered by a
gel-like membrane;

California newt




The Duplicate Primitive — Biology

@ clone: 7-30 eggs;

@ cover: Eggs covered by a
gel-like membrane;

California newt @ detect-respond:
Membrane contains
tarichatoxin.
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Primitives #3-4: Split/Merge
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@ Split an object, hide/protect the pieces!



The Split/Merge Primitives
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@ Merge unrelated object to sow confusion!
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@ Autotomy — when attacked, split, and give up on one part.

@ Often combined with detect-respond or regeneration.
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@ Terrorist networks split into autonomous cells.
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@ Split/Merge for code obfuscation.

P P P P
” fooh
. . [paE | [bart

- bar
fooB

@ Split functions,
@ Reorder the pieces,
© Merge back together.
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Primitive #5: Reorder

<0

=0
%0

@ Randomly reorder to sow confusion.

@ Reorder to convey information.
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Primitive #6: Indirect

5(50) | s | B j:o

@ Add confusing levels of indirection!
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o

Decoy Decoy Indic%
@ Stop opposing team from stealing signs!

@ Real sign follows indicator sign.
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@ Indirection is a common adventure movie plot device.

@ A sequence of clues, each one pointing to the next one, leads
to the treasure:
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@ Indirection is a common adventure movie plot device.

@ A sequence of clues, each one pointing to the next one, leads
to the treasure:

=
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| void bar(){}

vogj lfaarg?j void (*x)() = &bar;
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_ void bar(){}
VO!j ?arE;?j void (*x)() = &bar;
VOI (e]6] void ( )()
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= IPEC= AN~ = advertise="prop"

@ The model assumes that objects keep all information about
themselves secret. Advertise breaks this secrecy.

@ Advertise your strengths!

o Falsely advertise to hide your weaknesses!



@ Aposematic coloration: Toxic species use bright colors to
advertise their harmfulness.

@ Red-yellow-black stripes of the poisonous Coral snake.

@ The non-venomous King snake uses mimicking and false
advertising.

-

Eastemn Coral Snake -

[veromous) "
Scarlet King Snake
(non-venumuus_)‘—/

- = color  ="R-Y-B"
color  ="R-Y-B! — | poisonous="True"
poisonous="True" £/ "poison”

‘poison gl © "color",
. [rcolor", 4 advertise=q, . o o
advertise= i AN

Y B

Y N
20 poisonous
7]
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x— fx— f(fx)— f(f(#))...

@ Repeatedly apply a primitive f to an object x.

@ Fast movement, unpredictable movement, continuous
evolution of defenses. . .
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“even in the face of intense
efforts to find and destroy
them, the mobile launch-
ers proved remarkably elusive
and survivable”
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Discussion

@ Are these observations useful at all?

© Useful to me! _'ﬁ

Collberg

Addison- editor:
Wesley Gary McGraw

@ Can we model existing /predict future algorithms?

@ Extend the model to incorporate attacks:

© Attacks peel off layers of compositions.
@ Model the difference in cost between defenses and attacks.

(]

Develop a formal semantics!

Find unexpressible natural /computational scenarios!

Eliminate redundant primitives!
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Primitive #7: Map
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= AN~ nf(p)"

@ Translate every component into something different.

@ Creates confusion or encodes data.

@ Keep the inverse of the mapping function secret.
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1 will now catch up with my correspondence and
attend to my household chores and hobbies,My Rock
Gaprden 1s beautiful just now.As to my doll collection

[ am trying to purchase a few foreign ones no longer

In the shops.

I just sectred a lovely Siamese Temple Dancer,it had
baen demaged,that is torein the middle,but 1t 1s now
repalred and I 1like it very much.I could not get a

mate for this Siam dencer,so I am redressing Just a

small plain ordinary doll into a second Siam doll,

I cannot say that I like this ®tuld be futare Siam
doll now,yet I hope after e while I will perform

4 miracle and have a mate to my Slamese dancer,My

future production will be rather smaller than the

original repaired one yet I am copping the costums
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1 will now catch up with my correspondence and
attend to my household chores and hobbies,My Rock
Gaprden 1s beautiful just now.As to my doll collection

[ am trying to purchase a few foreign ones no longer

In the shops.

I just secAred ve [Siamese Temple Dancer|it had
been demaged,that is Forein the middlelbut 1t 1s now
repalred and I/11ke 1t very muoch.I could nok_get A

mate for thig Siam dancer,so I am redressing\just a
rdinary doll into a second Siam dpll,
thet I like this wéuld be futare) Siam

hope after e while I will per
have a mate to my Si dancer ,My
tion will be her smaller than the
aired one I am copwing the costums

doll now,yet
a miracle a
futurs prod
original re

Siamese Temple Dancer = gitCraft carrier warship

tore in the middle = torpedoed in the middle
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class DRM {
int secretkKey = 0xff004587;

int decrypt (int data) {

}
}

g
class C1 {
int il = 0xff004587;

int m1 (int x1) {
)

}

Universe

prog

"the"
Ilbigll
"bright"
Ilgreenll
"pleasure"

"machine"

Universe

prog

IIXOII
"Xl n
"X2"
"X3"
"X4 n
"X5"
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Primitive #8: Mimic

==y
)

-0

)

==y
=

@ Use as camouflage — blend in with the background!

@ Use as deterrent — look scary!

o Copy a property from object A to B.
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Universe

Viagra

Speed

color

shape

front Pfizer"

back ="VGR50"

"sildenafil citrate"
"color",

advertise={ ,oo2Pe":
“front",

"back"

advertise=

Universe

Viagra

Speed

color  ="blue"
shape ="rhombus"
front ="Pfizer"
back ="VGR50"
"sildenafil citrate"
"color",
f "
advertise= ":hape"'
ront",
"back"
color  ="pink"
“"amphetamine"
"color",
advertise= Ehanek
"front",
"back"
shape rhombus"
front ="Pfizer"
back ="VGR50"
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Universe

Universe

Universe

"add"
"mul"

"sub"

—
=
LE. "mul"




P P
foo(){ bar(){

X=X+1; x=x-1;
y=y*5; ) y=y/5;

Universe
fun

}
main(){ main(){
foo(); foo();
} } if (False)bar();
42
o ["adar [ "adqan
"add" % | "mul" g LE‘ "mul"
"mul" AN~ E — [ "agqn M E — | "sub"
=) g =) =

LE "mul" E "mul"




P P
foo(){ bar(){

X=X+1; x=x-1;
y=y*5; ) y=y/5;

Universe
fun

}
main(){ main(){
foo(); foo();
} } if (False)bar();
42 42
o ["adar [ "adqan
"add" % | "mul" g LE‘ "mul"
"mul" AN~ E — [ "agqn M E — | "sub"
=) g =) =

LE "mul" E "mul"
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Primitive #10: Detect-respond

Tamperproofing has two parts:
@ detecting that an attack has occurred
@ reacting to this.

The reaction can be a combination of
@ self-destructing (in whole or in part),

@ destroying objects in the environment (including the attacker),
or

© regenerating the tampered parts.
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O

-

x{ monitor_y=

E(monitor_y) = A

=0

@ A monitors the health of x.

o If T should happen, execute tamper-response E.




The Detect-respond Primitive — Biology

@ Some animals can regenerate destroyed parts of their bodies
after an attack:

Regenerating a limb

A newt can regenerate an entire
limb within 7-10 weeks.

.......
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LF
@m mmgﬂymgmm Post

AAAAAAAA June 28, 2003
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L .
} }
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The Detect-respond Primitive — Software
foo(){ foo(){
} - m
\
heck(){

checl
if (hash(...)!=42)

) e (][]

check(){ e

if (hash(foo)!=42)

foo(){ foo(){
cp
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