Models of Attack and Defense

Christian Collberg

University of Arizona

Models of Attack—and Defense

Christian Collberg

University of Arizona

Models of Attack—and m

Christian Collberg

University of Arizona

Surreptitious Software — Problems & Techniques

Problem Technique

Surreptitious Software — Problems & Techniques

Problem Technique

Software Piracy

[

Surreptitious Software — Problems & Techniques

Problem Technique

Software Piracy

Tampering

Surreptitious Software — Problems & Techniques

Problem Technique

Software Piracy

i

Tampering

Reverse Engineering

myCoolAlg(){
) e

Surreptitious Software — Problems & Techniques

Problem Technique
Software Piracy Watermarking
> |Bob's!
Tampering

[

Reverse Engineering

myCoolAlg(){
) e

Surreptitious Software — Problems & Techniques

Problem Technique
Software Piracy Watermarking
> |Bob's!
Tampering Tamperproofing
‘ if (tampered)
E> KillProg();

Reverse Engineering

myCoolAlg(){
) e

Surreptitious Software — Problems & Techniques

Problem Technique
Software Piracy Watermarking
> |Bob's!
Tampering Tamperproofing
‘ if (tampered)
E> KillProg();

Reverse Engineering Obfuscation

myCoolAlg(){ l::>
) e

Surreptitious Software — Problems & Techniques

Problem

Technique

Software Piracy

Tampering

Reverse Engineering

myCoolAlg(){
) e

[Jw®

[

o

Watermarking

Bob' s!

Tamperproofing

if (tampered)

KillProg();

Obfuscation

@ Techniques are code transformations.

Surreptitious Software — Problems & Techniques

Problem Technique
Software Piracy Watermarking
> |Bob's!
Tampering Tamperproofing
if (tampered)
E> KillProg();
Reverse Engineering Obfuscation
myCoolAlg(){ l::>
) es

@ Techniques are code transformations.

@ Tools compile unprotected programs to protected programs.

Program

@ Observations:

© many software protection algorithms use similar
transformations.

Program

@ Observations:
© many software protection algorithms use similar
transformations.
@ protection schemes in the natural world seem to use similar
transformations.

Program

@ Observations:
© many software protection algorithms use similar
transformations.
@ protection schemes in the natural world seem to use similar
transformations.
o Conjectures:

© protection in the natural world can teach us something about
protection in our artificial world.

Program

@ Observations:
© many software protection algorithms use similar
transformations.
@ protection schemes in the natural world seem to use similar
transformations.

o Conjectures:

© protection in the natural world can teach us something about
protection in our artificial world.
@ there is a finite number of transformations.

Program

@ Observations:
© many software protection algorithms use similar
transformations.
@ protection schemes in the natural world seem to use similar
transformations.
o Conjectures:
© protection in the natural world can teach us something about
protection in our artificial world.
@ there is a finite number of transformations.
@ Program:

o identify a set of primitives that describe and classify software
protection algorithms.

@ We want a model that
© helps us analyze published algorithms,

@ We want a model that

© helps us analyze published algorithms,
@ serves as a design pattern for future algorithms.

@ We want a model that

© helps us analyze published algorithms,
@ serves as a design pattern for future algorithms.

o This talk:
@ Model notation:
@ The primitives of the model,
© Examples from biology, history, and computing;
@ Discussion (useful? complete?).

Model notation

The model notation consists of
@ Frames

@ Properties

© Transformations

@ Demons

Model notation

The model notation consists of
@ Frames

@ Properties

© Transformations

@ Demons

@ Frames are a knowledge representation device used in Al.

Model notation

The model notation consists of
@ Frames

@ Properties

© Transformations

@ Demons

@ Frames are a knowledge representation device used in Al.

o Basic idea: Frame-to-frame transformations represent
transformations from unprotected to protected universes.

Frames

Frames represent a universe of object.

Universe
Alice
O

purse
O

Frames

Frame slots describe object properties.

name="Alice"
age =22

Alice

Universe

O

purse

Frames

Frames can contain other frames.

[name:"Alice"J

Alice

brand="Prada"

color="brown"

=1
§(Lroane=s)
O

Universe

purse
Wallet

Protection Strategies

@ Protection strategies: functions mapping frames to frames.

O

Universe
Sand Turtle

Universe
Sand FEgg Turtle

0]

o o

Protection Strategies

@ Protection strategies: functions mapping frames to frames.

O

Universe
Sand Turtle

0]

o o

Universe
Sand FEgg Turtle

@ Defense-in-depth: Layer protection schemes using function
composition.

Demons

@ Slots can have demons which fire under the right
circumstances.

O

Toad

Universe

poisonous="yes"

)
a0
A | eaten = cause harm

cover

138 | ~ | -[FC8

duplicate

D"< AN~ o

Primitives

)

N

p:"Val n
%0
=0

split

U?

N

I
N

p: "Val n

O

p: "Val n

e

~

Primitives

merge

pP= vall “vall“,

q: val P:{llva12ll }
q:"Va]."

10,
AN~ bl @ -0
oJ0)
10

reorder

O >0
21 N w0 AN Pl Y %0

indirect

Primitives

map

y "f(a) "
D ol AN~ "f(b)"

Primitives

mimic

=y
)

-0

=)

»

=

prop="val"

Primitives

advertise

advertise="prop"

[| s |

prop ="val" ’

detect-respond

e .| monitor_y=
=1 0 AN 5 E(monitor_y) = A
>0

dynamic

x — fx — f(fx) — f(f(#&))...

compose

(f o g)(x) = f(g(x))

Primitive #1: Cover

@ Fundamental way of protecting something: cover it with
another object!

(o]
agessaIy
o o

STORISIH TR SURISIO
OSIPATUN)
o o o o
SNARISIH] OSRSSO[\ IIR[] SURISIOJ
QSIoATU()

>
| &
@]
)
&)
T
()
2
2
£
—
o
—
(]
>
(@]
()
(D)
L=
_I

(o]
agessaIy
o o

STORISIH TR SURISIO
OSIPATUN)
o o o o
SNARISIH] OSRSSO[\ IIR[] SURISIOJ
QSIoATU()

>
| &
@]
)
&)
T
()
2
2
£
—
o
—
(]
>
(@]
()
(D)
L=
_I

(o]
agessaIy
o o

STORISIH TR SURISIO
OSIPATUN)
o o o o
SNARISIH] OSRSSO[\ IIR[] SURISIOJ
QSIoATU()

Smulation!

>
| &
@]
)
&)
T
()
2
2
£
—
o
—
(]
>
(@]
()
(D)
L=
_I

(o]
agessaIy
o o

STORISIH TR SURISIO
OSIPATUN)
o o o o
SNARISIH] OSRSSO[\ IIR[] SURISIOJ
QSIoATU()

>
@]
)
&)
T
()
>
=
£
—
o
—
(]
>
(@]
)
(D)
_I

(o]
agessaIy
o o

STORISIH TR SURISIO
OSIPATUN)
o o o o
SNARISIH] OSRSSO[\ IIR[] SURISIOJ
QSIoATU()

>
| &
)
&)
T
()
>
=
£
—
o
—
(]
>
(@]
)
(D)
_I

The Cover Primitive — Software/Hardware

The Cover Primitive — Software/Hardware

VM

The Cover Primitive — Software/Hardware

The Cover Primitive — Software/Hardware

The Cover Primitive — Software/Hardware

Primitive #2: Duplicate

L5 |~

@ Add decoy objects to force an attacker to consider more
items.

Primitive #2: Duplicate

L5 |~

@ Add decoy objects to force an attacker to consider more
items.

@ Add a clone of an object to force an attacker to destroy both
copies.

The Duplicate Primitive — Biology

California newt

The Duplicate Primitive — Biology

@ clone: 7-30 eggs;

California newt

The Duplicate Primitive — Biology

@ clone: 7-30 eggs;

@ cover: Eggs covered by a
gel-like membrane;

California newt

The Duplicate Primitive — Biology

@ clone: 7-30 eggs;

@ cover: Eggs covered by a
gel-like membrane;

California newt @ detect-respond:
Membrane contains
tarichatoxin.

The Duplicate Primitive — History

The Duplicate Primitive — History

The Duplicate Primitive — History

The Duplicate Primitive — History

The Duplicate Primitive — History

The Duplicate Primitive — History

The Duplicate Primitive — History

The Duplicate Primitive — History

The Duplicate Primitive — History

The Duplicate Primitive — History

The Duplicate Primitive — History

The Duplicate Primitive — History

The Duplicate Primitive — History

The Duplicate Primitive — Software

P

:
m\§i Of
foo();

foo();
}

The Duplicate Primitive — Software

P

foo(){ foo’(){
|
} }
m\§ {
foo();

foo();
}

The Duplicate Primitive — Software

P

main({

foo();
foo’();
}

The Duplicate Primitive — Software

P

main({

foo();
foo’();

Primitives #3-4: Split/Merge

pzllvalll
p:"val" N v O
=11 e 0 AN B
>0 .| p="val"
S| w0

@ Split an object, hide/protect the pieces!

The Split/Merge Primitives

p="vall"
q: n val n

e
=0

p="val2"

~0

20

]/
["val1,
p_ "yal2"

q="val"
O
>0
~0
20

@ Merge unrelated object to sow confusion!

The Split/Merge Primitives — Biology

@ Autotomy — when attacked, split, and give up on one part.

The Split/Merge Primitives — Biology

@ Autotomy — when attacked, split, and give up on one part.

The Split/Merge Primitives — Biology

@ Autotomy — when attacked, split, and give up on one part.

@ Often combined with detect-respond or regeneration.

The Split/Merge Primitives — History

The Split/Merge Primitives — History

@ Terrorist networks split into autonomous cells.

The Split/Merge Primitives — History

@ Terrorist networks split into autonomous cells.

The Split/Merge Primitives — Software

10000000010011110001000000000000
00000000111000000000000000010000
00000000001101111110000000000000
00000000111000000010000000011000
00000000001111110000000000000000
10100101010101101010110010101010
10100000000011100000000000000110

e

The Split/Merge Primitives — Software

10000000010011110001000000000000
00000000111000000000000000010000
00000000001101111110000000000000
00000000111000000010000000011000
00000000001111110000000000000000
10100101010101101010110010101010
10100000000011100000000000000110

e

The Split/Merge Primitives — Software

10000000010011110001000000000000
00000000111000000000000000010000
00000000001101111110000000000000
00000000111000000010000000011000
00000000001111110000000000000000
10100101010101101010110010101010
10100000000011100000000000000110

e

The Split/Merge Primitives — Software

10000000010011110001000000000000
00000000111000000000000000010000
00000000001101111110000000000000
00000000111000000010000000011000
00000000001111110000000000000000
10100101010101101010110010101010
10100000000011100000000000000110

e

The Split/Merge Primitives — Software

10000000010011110001000000000000
00000000111000000000000000010000
00000000001101111110000000000000
00000000111000000010000000011000
00000000001111110000000000000000
10100101010101101010110010101010
10100000000011100000000000000110

e

The Split/Merge Primitives — Software

10000000010011110001000000000000
00000000111000000000000000010000
00000000001101111110000000000000
00000000111000000010000000011000
00000000001111110000000000000000
10100101010101101010110010101010
10100000000011100000000000000110

e

The Split/Merge Primitives — Software

10000000010011110001000000000000
00000000111000000000000000010000
00000000001101111110000000000000
00000000111000000010000000011000
00000000001111110000000000000000
10100101010101101010110010101010
10100000000011100000000000000110

The Split/Merge Primitives — Software

10000000010011110001000000000000
00000000111000000000000000010000
00000000001101111110000000000000
00000000111000000010000000011000
00000000001111110000000000000000
10100101010101101010110010101010
10100000000011100000000000000110

e
Y

10101001010011110001000000000000
00000000111000001010101000010000
00000000001101111110000000000000
00000000111000000010000000011000
00000000001111101010100000000000
00001111000000111100000000000000
10100000000011100000000001010110

s

The Split/Merge Primitives — Software

@ Split/Merge for code obfuscation.

P

foo

bar

The Split/Merge Primitives — Software

@ Split/Merge for code obfuscation.

P P

fooA
fooB

foo

barA
barB

bar

U

@ Split functions,

The Split/Merge Primitives — Software

@ Split/Merge for code obfuscation.

P P P
-
. . baB
barA barA
bar

@ Split functions,
@ Reorder the pieces,

The Split/Merge Primitives — Software

@ Split/Merge for code obfuscation.

P P P P
” fooh
. . [paE | [bart

- bar
fooB

@ Split functions,
@ Reorder the pieces,
© Merge back together.

Primitive #5: Reorder

O >0
=l N =0 AN~ Bl 8 %0

@ Randomly reorder to sow confusion.

Primitive #5: Reorder

<0

=0
%0

@ Randomly reorder to sow confusion.

@ Reorder to convey information.

The Reorder Primitive — History

Wilsn

The Reorder Primitive — History

MHS‘»IH o

The Reorder Primitive — History

WRESR.

The Reorder Primitive — History

o >

1 &

The Reorder Primitive — History

>
|
(@)
)
9
T
()
2
=
S
=
o
—
[}
O
—
o]
(D)
o
(D)
L=
_I

E....:.:E:.E..S.::EZW
m\w 5250000605020900500 A0

>
P -
(@)
s}
2]

ive — H

It

m

The Reorder Pr

E....:.:E:.E..S.::EZW
m\w 5250000605020900500 A0

>
P -
(@)
s}
2]

ive — H

It

m

The Reorder Pr

o)
2
i)
T

|

()
2

It

m

The Reorder Pr

o)
2
i)
T

|

()
2

It

m

The Reorder Pr

E....:.:E:.E..S.::EZW
m\w 5250000605020900500 A0

>
P -
(@)
s}
2]

ive — H

It

m

The Reorder Pr

The Reorder Primitive — History

5 o

The Reorder Primitive — History

o)
2
i)
T

|

()
2

It

m

The Reorder Pr

E....:.:E:.E..S.::EZW
m\w 5250000605020900500 A0

>
P -
(@)
s}
2]

ive — H

It

m

The Reorder Pr

>
P -
(@)
s}
2]

ive — H

It

m

The Reorder Pr

The Reorder Primitive — History

Y
go

<
-

The Reorder Primitive — History

» >
g |
)
8
» I

=T ¢
o3
3
s e
C &

o O O O O

¢qq9 €99 ¥q9 <999 199

uny

AsIaATU()

o O O O O

199 294 €49 F49 ¢ad

g

ASIOATU[)

&
o
g
5
80
8
f
3

if (e) goto B3

if (e) goto Bg

Il

Reorder = watermark

=

if (e) goto By

N

goto By

L

if (e) goto Bg
|

[
1

1

v

if (e) goto B3

if (e) goto Bg
goto Bg

B, -
— >

Reorder = watermark

Universe

O O O O O

=
=
B
2
2
=
2
2
=
2
=
2
=

Universe

Primitive #6: Indirect

5(50) | s | B j:o

@ Add confusing levels of indirection!

The Indirect Primitive — History

Dééoy

@ Stop opposing team from stealing signs!

The Indirect Primitive — History

Dééoy Decoy |

@ Stop opposing team from stealing signs!

The Indirect Primitive — History

[P =~

Decoy Decoy Indicator!

@ Stop opposing team from stealing signs!

@ Real sign follows indicator sign.

The Indirect Primitive — History

o

Decoy Decoy Indic%
@ Stop opposing team from stealing signs!

@ Real sign follows indicator sign.

The Indirect Primitive — History

@ Indirection is a common adventure movie plot device.

@ A sequence of clues, each one pointing to the next one, leads
to the treasure:

The Indirect Primitive — History

@ Indirection is a common adventure movie plot device.

@ A sequence of clues, each one pointing to the next one, leads
to the treasure:

The Indirect Primitive — History

@ Indirection is a common adventure movie plot device.

@ A sequence of clues, each one pointing to the next one, leads
to the treasure:

The Indirect Primitive — History

@ Indirection is a common adventure movie plot device.

@ A sequence of clues, each one pointing to the next one, leads
to the treasure:

SICHRE= ang J=rry Bruckhelmer nc.

The Indirect Primitive — History

@ Indirection is a common adventure movie plot device.

@ A sequence of clues, each one pointing to the next one, leads
to the treasure:

C

The Indirect Primitive — History

@ Indirection is a common adventure movie plot device.

@ A sequence of clues, each one pointing to the next one, leads
to the treasure:

=
& 2004 Eusna ¥isia Pichues and Jen khelmer Inc.

The Indirect Primitive — Software

void bar(){}
void foo(){
)

.- J o

funl
(D}

2| vca1l ->ref2"

i
=
d=
a
AN~ .
Ng % "call funl"
- refl=

ref2=

fun2

Universe

Universe

The Indirect Primitive — Software

| void bar(){}

vogj lfaarg?j void (*x)() = &bar;

void foo l::> void (**y)() = &x;
bar(); void foo(){

} (**y)():)

Universe

Universe

i
=
d=
AN~
o™ —
=l < | "call funl"
& Q2

H
(0]
g
o
[
&
=) B

The Indirect Primitive — Software

_ void bar(){}
void bar(){} _ &bar

(

) void (*x)()

void foo(){j void (**y)() =

bar(); I::> void foozl){

} **v)()i
}

funl
(D}

fun2

i
=
d= —
ﬁ "call —>ref2"
AN~ .
Ng % "call funl"
- refl=

ref2=

Universe

Universe

The Indirect Primitive — Software

_ void bar(){}
VO!j ?arE;?j void (*x)() = &bar;
VOI (e]6] void ()()
bar(); I::> void foozl){
J (*)0);

}

funl
(D}

fun2

Universe

Universe

=

3

- % "call —>ref2"
AN~ .

Ng % "call funl"

- refl=

ref2=

Primitive #9: Advertise

= IPEC= AN~ = advertise="prop"

@ The model assumes that objects keep all information about
themselves secret. Advertise breaks this secrecy.

Primitive #9: Advertise

= IPEC= AN~ = advertise="prop"

@ The model assumes that objects keep all information about
themselves secret. Advertise breaks this secrecy.

@ Advertise your strengths!

Primitive #9: Advertise

= IPEC= AN~ = advertise="prop"

@ The model assumes that objects keep all information about
themselves secret. Advertise breaks this secrecy.

@ Advertise your strengths!

o Falsely advertise to hide your weaknesses!

@ Aposematic coloration: Toxic species use bright colors to
advertise their harmfulness.

@ Red-yellow-black stripes of the poisonous Coral snake.

@ The non-venomous King snake uses mimicking and false
advertising.

-

Eastemn Coral Snake -

[veromous) "
Scarlet King Snake
(non-venumuus_)‘—/

- = color ="R-Y-B"
color ="R-Y-B! — | poisonous="True"
poisonous="True" £/ "poison”

‘poison gl © "color",
. [rcolor", 4 advertise=q, . o o
advertise= i AN

Y B

Y N
20 poisonous
7]

The Advertise Primitive — History

The Advertise Primitive — History

The Advertise Primitive — History

The Advertise Primitive — History

The Advertise Primitive — History

The Advertise Primitive — History

The Advertise Primitive — History

The Advertise Primitive — History

The Advertise Primitive — History

Tp—————
| Pstl Ch
container

F3530A

The Advertise Primitive — History

Tp—————
| Pstl Ch
container

F3530A

Primitive #11: Dynamic

X

@ Repeatedly apply a primitive f to an object x.

@ Fast movement, unpredictable movement, continuous
evolution of defenses. . .

Primitive #11: Dynamic

x— fx

@ Repeatedly apply a primitive f to an object x.

@ Fast movement, unpredictable movement, continuous
evolution of defenses. . .

Primitive #11: Dynamic

x— fx— f(fx)

@ Repeatedly apply a primitive f to an object x.

@ Fast movement, unpredictable movement, continuous
evolution of defenses. . .

Primitive #11: Dynamic

x— fx— f(fx)— f(f(#))...

@ Repeatedly apply a primitive f to an object x.

@ Fast movement, unpredictable movement, continuous
evolution of defenses. . .

The Dynamic Primitive — Animals

<:i>50nw
turn

The Dynamic Primitive — Animals

<:i>50nw
turn

The Dynamic Primitive — Animals

<:i>50nw
turn

The Dynamic Primitive — Animals

<:i>50nw
turn

The Dynamic Primitive — Animals

<:i>50nw
turn

The Dynamic Primitive — Animals

<:i>50nw
turn

The Dynamic Primitive — Animals

<:i>50nw
turn

The Dynamic Primitive — Animals

50 ms
turn

o™

The Dynamic Primitive — Animals

<:i>50nw
turn

The Dynamic Primitive — Animals

50 ms
turn

C

The Dynamic Primitive — History

“even in the face of intense
efforts to find and destroy
them, the mobile launch-
ers proved remarkably elusive
and survivable”

The Dynamic Primitive — History

“even in the face of intense
efforts to find and destroy
them, the mobile launch- ¥a
ers proved remarkably elusive
and survivable”

The Dynamic Primitive — History

“even in the face of intense
efforts to find and destroy
them, the mobile launch-
ers proved remarkably elusive
and survivable”

The Dynamic Primitive — History

“even in the face of intense
efforts to find and destroy
them, the mobile launch-
ers proved remarkably elusive
and survivable”

The Dynamic Primitive — History

“even in the face of intense
efforts to find and destroy
them, the mobile launch-

ers proved remarkably elusive Lﬁ

and survivable”

The Dynamic Primitive — History

“even in the face of intense
efforts to find and destroy
them, the mobile launch-
ers proved remarkably elusive
and survivable”

The Dynamic Primitive — History

“even in the face of intense
efforts to find and destroy
them, the mobile launch-
ers proved remarkably elusive
and survivable”

The Dynamic Primitive — History

“even in the face of intense
efforts to find and destroy

them, the mobile launch-
ers proved remarkably elusive

and survivable”

The Dynamic Primitive — History

“even in the face of intense
efforts to find and destroy
them, the mobile launch-
ers proved remarkably elusive
and survivable”

The Dynamic Primitive — History

“even in the face of intense
efforts to find and destroy
them, the mobile launch-
ers proved remarkably elusive
and survivable”

The Dynamic Primitive — Aucsmith

The Dynamic Primitive — Aucsmith

The Dynamic Primitive — Aucsmith

The Dynamic Primitive — Aucsmith

The Dynamic Primitive — Aucsmith

—— — ®
AW AN

NSNS NN AN A
AAAAAN

NSNS NN AAAAAN
NSNS NN AAAAAN

The Dynamic Primitive — Aucsmith

The Dynamic Primitive — Aucsmith

The Dynamic Primitive — Aucsmith

Discussion

@ Are these observations useful at all?

Discussion

@ Are these observations useful at all?

© Useful to me! 1ﬁ

Collberg

Addison- editor:
Wesley Gary McGraw

Discussion

@ Are these observations useful at all?

© Useful to me! 1ﬁ

Collberg

Addison- editor:
Wesley Gary McGraw

@ Can we model existing /predict future algorithms?

Discussion

@ Are these observations useful at all?

© Useful to me! 1ﬁ

Collberg

Addison- editor:
Wesley Gary McGraw

@ Can we model existing /predict future algorithms?

@ Extend the model to incorporate attacks:

Discussion

@ Are these observations useful at all?

© Useful to me! 1ﬁ

Collberg

Addison- editor:
Wesley Gary McGraw

@ Can we model existing /predict future algorithms?

@ Extend the model to incorporate attacks:
© Attacks peel off layers of compositions.

Discussion

@ Are these observations useful at all?

© Useful to me! 1ﬁ

Collberg

Addison- editor:
Wesley Gary McGraw

@ Can we model existing /predict future algorithms?

@ Extend the model to incorporate attacks:

© Attacks peel off layers of compositions.
@ Model the difference in cost between defenses and attacks.

Discussion

@ Are these observations useful at all?

© Useful to me! _'ﬁ

Collberg

Addison- editor:
Wesley Gary McGraw

@ Can we model existing /predict future algorithms?

@ Extend the model to incorporate attacks:

© Attacks peel off layers of compositions.
@ Model the difference in cost between defenses and attacks.

@ Develop a formal semantics!

Discussion

@ Are these observations useful at all?

© Useful to me! _'ﬁ

Collberg

Addison- editor:
Wesley Gary McGraw

@ Can we model existing /predict future algorithms?

@ Extend the model to incorporate attacks:

© Attacks peel off layers of compositions.
@ Model the difference in cost between defenses and attacks.

@ Develop a formal semantics!

@ Find unexpressible natural/computational scenarios!

Discussion

@ Are these observations useful at all?

© Useful to me! _'ﬁ

Collberg

Addison- editor:
Wesley Gary McGraw

@ Can we model existing /predict future algorithms?

@ Extend the model to incorporate attacks:

© Attacks peel off layers of compositions.
@ Model the difference in cost between defenses and attacks.

(]

Develop a formal semantics!

Find unexpressible natural /computational scenarios!

Eliminate redundant primitives!

it
if (hash(...)!=42)

oo][]

Primitive #7: Map

x N llf(a) n
= AN~ nf(p)"

@ Translate every component into something different.

@ Creates confusion or encodes data.

@ Keep the inverse of the mapping function secret.

The Map Primitive — History

1 will now catch up with my correspondence and
attend to my household chores and hobbies,My Rock
Gaprden 1s beautiful just now.As to my doll collection

[am trying to purchase a few foreign ones no longer

In the shops.

I just sectred a lovely Siamese Temple Dancer,it had
baen demaged,that is torein the middle,but 1t 1s now
repalred and I 1like it very much.I could not get a

mate for this Siam dencer,so I am redressing Just a

small plain ordinary doll into a second Siam doll,

I cannot say that I like this ®tuld be futare Siam
doll now,yet I hope after e while I will perform

4 miracle and have a mate to my Slamese dancer,My

future production will be rather smaller than the

original repaired one yet I am copping the costums

The Map Primitive — History

1 will now catch up with my correspondence and
attend to my household chores and hobbies,My Rock
Gaprden 1s beautiful just now.As to my doll collection

[am trying to purchase a few foreign ones no longer

In the shops.

I just sectred vely [Siamese Templs Dancerlit had
baen demaged,thet i1s torein the middle,but 1t 1s now
repalred and I/11ke it very much.I could not get a

mate for thig Siam dencer,so I am redressing Just a

rdirary doll into a second Siam doll,
thet I like this wéuld be future Siam
hope after e while I will perform

have a mate to my Siamese dancer ,My
tlon will be rather smaller than the
aired one yet I am copping the costums

doll now,yet
a miracle a
futurs prod
original re

Siamese Temple Dancer = aircraft carrier warship

The Map Primitive — History

1 will now catch up with my correspondence and
attend to my household chores and hobbies,My Rock
Gaprden 1s beautiful just now.As to my doll collection

[am trying to purchase a few foreign ones no longer

In the shops.

I just secAred ve [Siamese Temple Dancer|it had
been demaged,that is Forein the middlelbut 1t 1s now
repalred and I/11ke 1t very muoch.I could nok_get A

mate for thig Siam dancer,so I am redressing\just a
rdinary doll into a second Siam dpll,
thet I like this wéuld be futare) Siam

hope after e while I will per
have a mate to my Si dancer ,My
tion will be her smaller than the
aired one I am copwing the costums

doll now,yet
a miracle a
futurs prod
original re

Siamese Temple Dancer = gitCraft carrier warship

tore in the middle = torpedoed in the middle

class DRM {
int secretKey = 0xff004587;

int decrypt (int data) {

}
}

class DRM {
int secretkKey = 0xff004587;

int decrypt (int data) {

}
}

g
class C1{
int i1 = 0xff004587;

int m1 (int x1) {

}
}

class DRM {
int secretkKey = 0xff004587;

int decrypt (int data) {

}
}

g
class C1 {
int il = 0xff004587;

int m1 (int x1) {
)

}

Universe

prog

"the"
Ilbigll
"bright"
Ilgreenll
"pleasure"

"machine"

Universe

prog

IIXOII
"Xl n
"X2"
"X3"
"X4 n
"X5"

Primitive #8: Mimic

==y
)

-0

)

==y
=

@ Use as camouflage — blend in with the background!

Primitive #8: Mimic

==y
)

-0

)

==y
=

@ Use as camouflage — blend in with the background!

@ Use as deterrent — look scary!

Primitive #8: Mimic

==y
)

-0

)

==y
=

@ Use as camouflage — blend in with the background!

@ Use as deterrent — look scary!

o Copy a property from object A to B.

The Mimic Primitive — Biology

Universe

Viagra

Speed

color

shape

front Pfizer"

back ="VGR50"

"sildenafil citrate"
"color",

advertise={ ,oo2Pe":
“front",

"back"

advertise=

Universe

Viagra

Speed

color ="blue"
shape ="rhombus"
front ="Pfizer"
back ="VGR50"
"sildenafil citrate"
"color",
f "
advertise= ":hape"'
ront",
"back"
color ="pink"
“"amphetamine"
"color",
advertise= Ehanek
"front",
"back"
shape rhombus"
front ="Pfizer"
back ="VGR50"

= "add"
o=

"mul"

Universe

Universe

Universe

"add"
"mul"

"sub"

—
=
LE. "mul"

P P
foo(){ bar(){

X=X+1; x=x-1;
y=y*5;) y=y/5;

Universe
fun

}
main(){ main(){
foo(); foo();
} } if (False)bar();
42
o ["adar ["adqan
"add" % | "mul" g LE‘ "mul"
"mul" AN~ E — ["agqn M E — | "sub"
=) g =) =

LE "mul" E "mul"

P P
foo(){ bar(){

X=X+1; x=x-1;
y=y*5;) y=y/5;

Universe
fun

}
main(){ main(){
foo(); foo();
} } if (False)bar();
42 42
o ["adar ["adqan
"add" % | "mul" g LE‘ "mul"
"mul" AN~ E — ["agqn M E — | "sub"
=) g =) =

LE "mul" E "mul"

Primitive #10: Detect-respond

Tamperproofing has two parts:
@ detecting that an attack has occurred

The reaction can be a combination of

Primitive #10: Detect-respond

Tamperproofing has two parts:
@ detecting that an attack has occurred
@ reacting to this.

The reaction can be a combination of

Primitive #10: Detect-respond

Tamperproofing has two parts:
@ detecting that an attack has occurred
@ reacting to this.

The reaction can be a combination of

@ self-destructing (in whole or in part),

Primitive #10: Detect-respond

Tamperproofing has two parts:
@ detecting that an attack has occurred
@ reacting to this.

The reaction can be a combination of
@ self-destructing (in whole or in part),

@ destroying objects in the environment (including the attacker),
or

Primitive #10: Detect-respond

Tamperproofing has two parts:
@ detecting that an attack has occurred
@ reacting to this.

The reaction can be a combination of
@ self-destructing (in whole or in part),

@ destroying objects in the environment (including the attacker),
or

© regenerating the tampered parts.

The Detect-respond Primitive

%O
D AN~

-

x{ monitor_y=

E(monitor_y) = A

=0

@ A monitors the health of x.

The Detect-respond Primitive

O

-

x{ monitor_y=

E(monitor_y) = A

=0

@ A monitors the health of x.

o If T should happen, execute tamper-response E.

The Detect-respond Primitive — Biology

@ Some animals can regenerate destroyed parts of their bodies
after an attack:

Regenerating a limb

A newt can regenerate an entire
limb within 7-10 weeks.

.......

The Detect-respond Primitive — History

The Detect-respond Primitive — History

The Detect-respond Primitive — History

LF
@m mmgﬂymgmm Post

AAAAAAAA June 28, 2003

The Detect-respond Primitive — Software

foo(){
}

The Detect-respond Primitive — Software
foo(){ foo(){
L .
} }

foo(foo(
} - m
\

check(){
if (hash(foo)!=42)

foo(){ foo(){
cp

The Detect-respond Primitive — Software
foo(){ foo(){
} - m
\
heck(){

checl
if (hash(...)!=42)

) e (][]

check(){ e

if (hash(foo)!=42)

foo(){ foo(){
cp

	Introduction
	Notation
	Cover
	Duplicate
	Split/Merge
	Reorder
	Indirect
	Advertise
	Dynamic
	Discussion

