Models of Attack and Defense

Christian Collberg

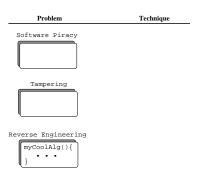
University of Arizona

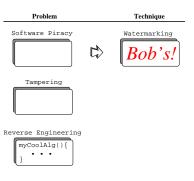
Models of Attack and Defense

Christian Collberg

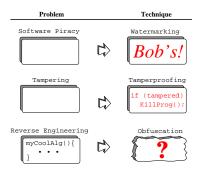
University of Arizona

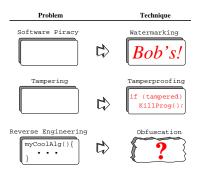
Models of Attack and Defense

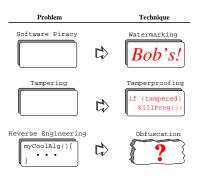

Christian Collberg


University of Arizona


Problem Technique


Problem	Technique
Software Piracy	


Problem	Technique
Software Piracy	
Tampering	



• Techniques are code transformations.

- Techniques are code transformations.
- Tools compile unprotected programs to protected programs.

- Observations:
 - many software protection algorithms use similar transformations.

Observations:

- many software protection algorithms use similar transformations.
- 2 protection schemes in the natural world seem to use similar transformations.

Observations:

- many software protection algorithms use similar transformations.
- 2 protection schemes in the natural world seem to use similar transformations.

Conjectures:

• protection in the natural world can teach us something about protection in our artificial world.

Observations:

- many software protection algorithms use similar transformations.
- 2 protection schemes in the natural world seem to use similar transformations.

Conjectures:

- protection in the natural world can teach us something about protection in our artificial world.
- 2 there is a finite number of transformations.

Observations:

- many software protection algorithms use similar transformations.
- 2 protection schemes in the natural world seem to use similar transformations.

Conjectures:

- protection in the natural world can teach us something about protection in our artificial world.
- 2 there is a finite number of transformations.

Program:

• identify a set of primitives that describe and classify software protection algorithms.

Goals

- We want a model that
 - helps us analyze published algorithms,

Goals

- We want a model that
 - 1 helps us analyze published algorithms,
 - 2 serves as a design pattern for future algorithms.

Goals

- We want a model that
 - helps us analyze published algorithms,
 - serves as a design pattern for future algorithms.
- This talk:
 - Model notation;
 - 2 The primitives of the model;
 - 3 Examples from biology, history, and computing;
 - 4 Discussion (useful? complete?).

Model notation

The model notation consists of

- Frames
- Properties
- Transformations
- Oemons

Model notation

The model notation consists of

- Frames
- Properties
- Transformations
- Oemons
 - Frames are a knowledge representation device used in Al.

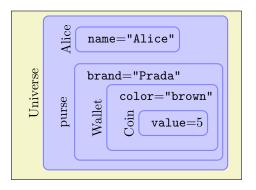
Model notation

The model notation consists of

- Frames
- Properties
- Transformations
- Oemons
 - Frames are a knowledge representation device used in Al.
 - Basic idea: Frame-to-frame transformations represent transformations from unprotected to protected universes.


Frames

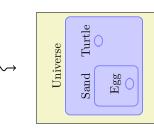
Frames represent a universe of object.


Frames

Frame slots describe object properties.

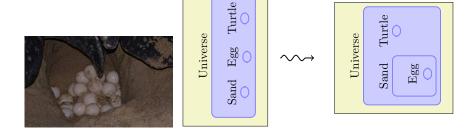
Frames

Frames can contain other frames.



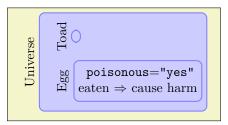
Protection Strategies

Protection strategies: functions mapping frames to frames.



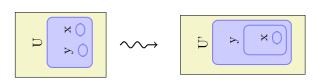
Protection Strategies

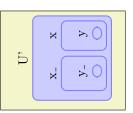
Protection strategies: functions mapping frames to frames.



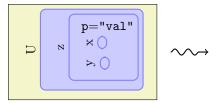
• Defense-in-depth: Layer protection schemes using function composition.

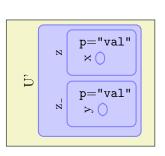
Demons

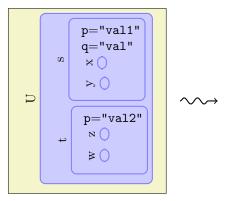

 Slots can have demons which fire under the right circumstances.

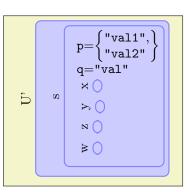

Primitives

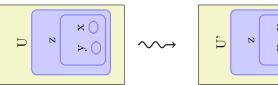
cover

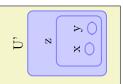



duplicate

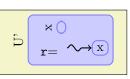

split



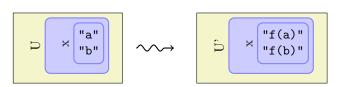

Primitives


merge

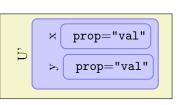
reorder



Primitives

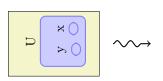

indirect

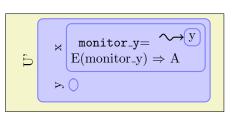
Primitives


map

Primitives

mimic



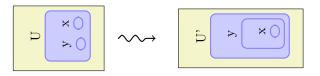


Primitives

advertise

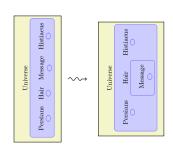
detect-respond

dynamic

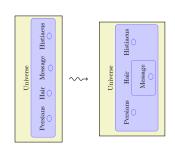

$$x \to fx \to f(fx) \to f(f(fx)) \dots$$

Primitives

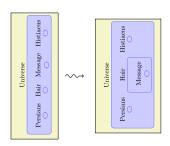
compose

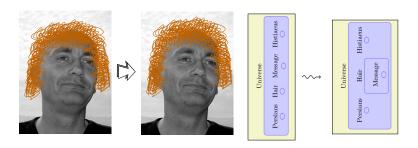

$$(f\circ g)(x)=f(g(x))$$

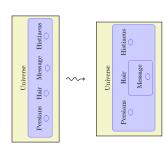
Primitive #1: Cover

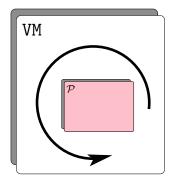


Fundamental way of protecting something: cover it with another object!

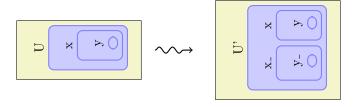


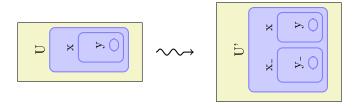












Primitive #2: Duplicate

 Add decoy objects to force an attacker to consider more items.

Primitive #2: Duplicate

- Add decoy objects to force an attacker to consider more items.
- Add a clone of an object to force an attacker to destroy both copies.

California newt

California newt

• **clone**: 7-30 eggs;

California newt

- **clone**: 7-30 eggs;
- cover: Eggs covered by a gel-like membrane;

California newt

- clone: 7-30 eggs;
- cover: Eggs covered by a gel-like membrane;
- detect-respond:
 Membrane contains tarichatoxin.



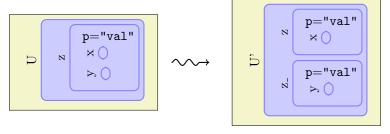


The Duplicate Primitive — Software

```
Ρ
  foo(){
        main(){
          foo();
          foo();
```

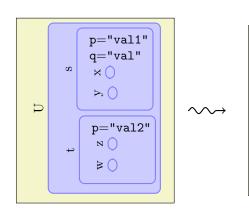
The Duplicate Primitive — Software

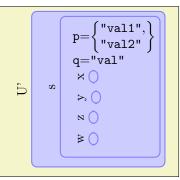
```
Ρ
  foo(){
              foo'(){
        main(){
         foo();
         foo();
```


The Duplicate Primitive — Software

```
Ρ
               foo'(){
  foo(){
        main(
          foo();
          foo'();
```

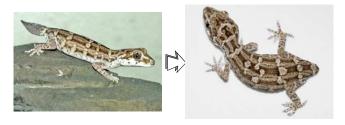
The Duplicate Primitive — Software


```
Ρ
  foo(){
                foo'(){
        main(
         fool
          foo'();
```


Primitives #3-4: Split/Merge

• Split an object, hide/protect the pieces!

The Split/Merge Primitives

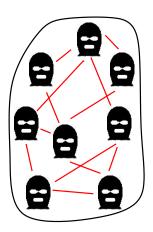

• Merge unrelated object to sow confusion!

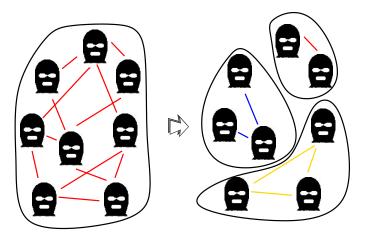
The Split/Merge Primitives — Biology

• Autotomy — when attacked, **split**, and give up on one part.

The Split/Merge Primitives — Biology

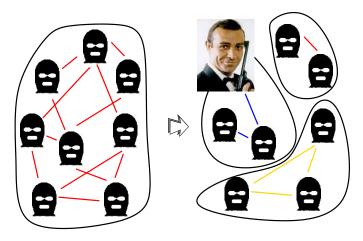
Autotomy — when attacked, split, and give up on one part.


The Split/Merge Primitives — Biology



- Autotomy when attacked, split, and give up on one part.
- Often combined with **detect-respond** or regeneration.

The Split/Merge Primitives — History

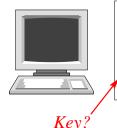


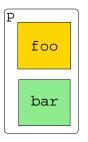
The Split/Merge Primitives — History

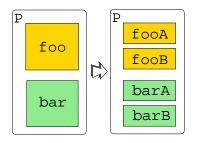
• Terrorist networks split into autonomous cells.

The Split/Merge Primitives — History

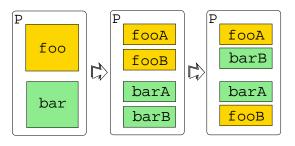
• Terrorist networks split into autonomous cells.



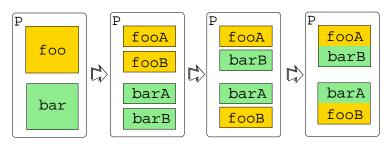




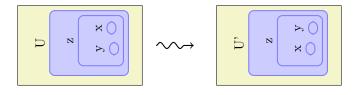
• **Split/Merge** for code obfuscation.



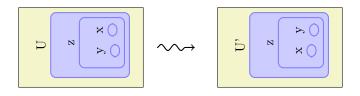
• **Split/Merge** for code obfuscation.


Split functions,

• **Split/Merge** for code obfuscation.


- Split functions,
- Reorder the pieces,

Split/Merge for code obfuscation.

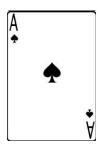

- Split functions,
- Reorder the pieces,
- **Merge** back together.

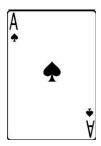
Primitive #5: Reorder

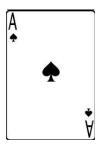
• Randomly reorder to sow confusion.

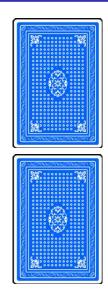
Primitive #5: Reorder

- Randomly reorder to sow confusion.
- Reorder to convey information.

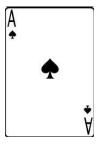


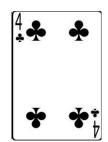


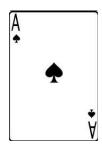


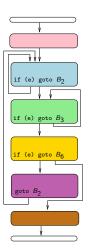


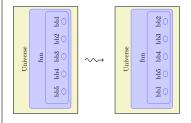


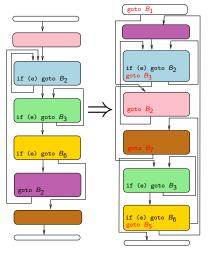


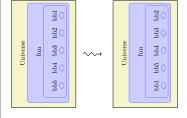












 $Reorder \Rightarrow watermark$



Reorder \Rightarrow watermark

Primitive #6: Indirect



Add confusing levels of indirection!

Decoy

• Stop opposing team from stealing signs!

• Stop opposing team from stealing signs!

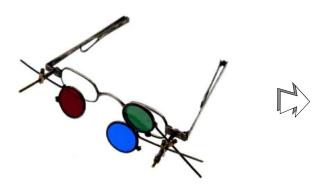
- Stop opposing team from stealing signs!
- Real sign follows indicator sign.

• Real sign follows indicator sign.

- Indirection is a common adventure movie plot device.
- A sequence of clues, each one pointing to the next one, leads to the treasure:

- Indirection is a common adventure movie plot device.
- A sequence of clues, each one pointing to the next one, leads to the treasure:

- Indirection is a common adventure movie plot device.
- A sequence of clues, each one pointing to the next one, leads to the treasure:

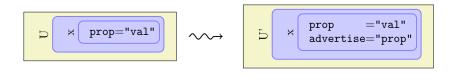


- Indirection is a common adventure movie plot device.
- A sequence of clues, each one pointing to the next one, leads to the treasure:

- Indirection is a common adventure movie plot device.
- A sequence of clues, each one pointing to the next one, leads to the treasure:

- Indirection is a common adventure movie plot device.
- A sequence of clues, each one pointing to the next one, leads to the treasure:


```
void bar(){}
void foo(){
    bar();
}
```



```
Implementation of the second o
```

```
void bar(){}
void bar()\{\}.
                                 void (*x)() = \&bar;
void foo(){
                                 void (**y)() = &x;
     bar();_
                                 void foo(){
      ffm1
  Universe
      fun2
           call fun1"
```

```
void bar(){}
void bar(){}.
                                void (*x)() = \&bar;
void foo(){
                                void (**y)() = &x;
     bar();_
                                void foo(){
      ffm1
  Universe
      fun2
           call fun1"
```

```
void bar(){}	✓
void bar(){}.
                                void (*x)() = \&bar;
void foo(){
                               void (**y)() = &x;
    bar();_
                                void foo(){
      ffm1
  Universe
      fun2
          call fun1"
```

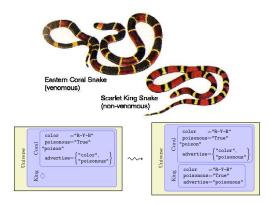
Primitive #9: Advertise

• The model assumes that objects keep all information about themselves secret. **Advertise** breaks this secrecy.

Primitive #9: Advertise


```
For the second s
```

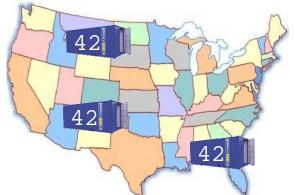
- The model assumes that objects keep all information about themselves secret. **Advertise** breaks this secrecy.
- Advertise your strengths!

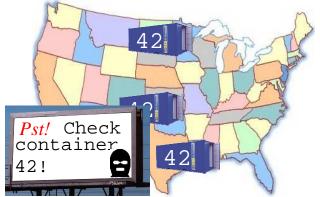

Primitive #9: Advertise


```
⊖ × prop ="val" advertise="prop"
```

- The model assumes that objects keep all information about themselves secret. Advertise breaks this secrecy.
- Advertise your strengths!
- Falsely advertise to hide your weaknesses!

- Aposematic coloration: Toxic species use bright colors to advertise their harmfulness.
- Red-yellow-black stripes of the poisonous Coral snake.
- The non-venomous King snake uses mimicking and false advertising.





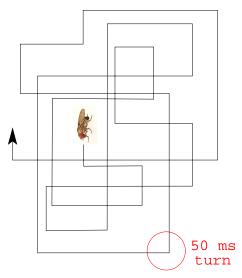

The Advertise Primitive — History

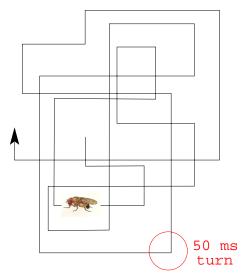
The Advertise Primitive — History

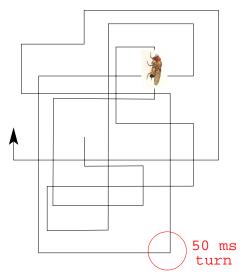
X

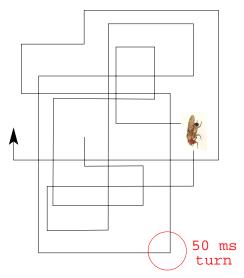
- Repeatedly apply a primitive f to an object x.
- Fast movement, unpredictable movement, continuous evolution of defenses. . .

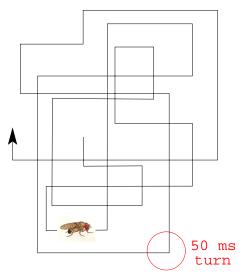
$$x \rightarrow fx$$

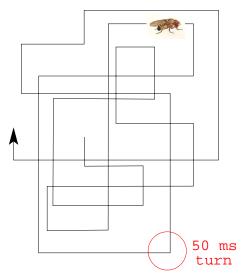

- Repeatedly apply a primitive f to an object x.
- Fast movement, unpredictable movement, continuous evolution of defenses. . .

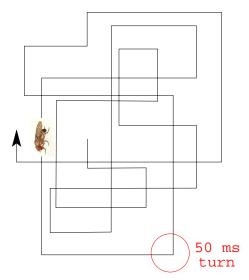

$$x \rightarrow fx \rightarrow f(fx)$$

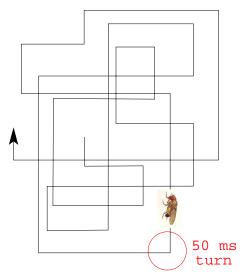

- Repeatedly apply a primitive f to an object x.
- Fast movement, unpredictable movement, continuous evolution of defenses...

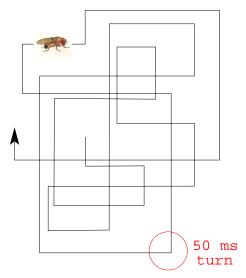

$$x \rightarrow fx \rightarrow f(fx) \rightarrow f(f(fx)) \dots$$

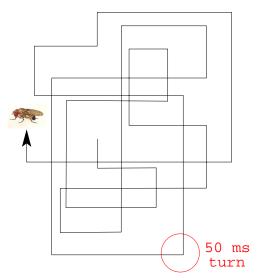

- Repeatedly apply a primitive f to an object x.
- Fast movement, unpredictable movement, continuous evolution of defenses...

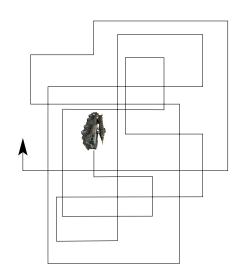


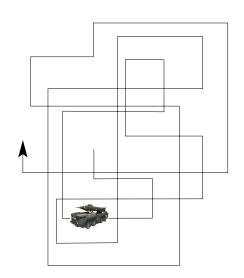


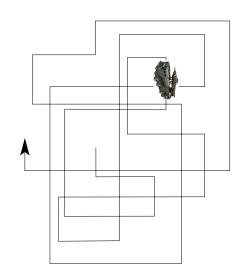


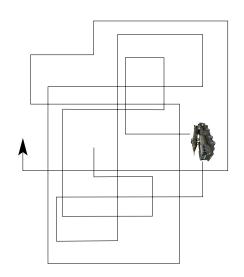


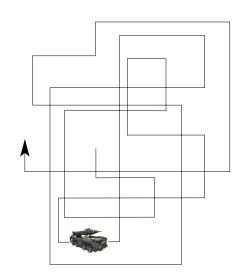


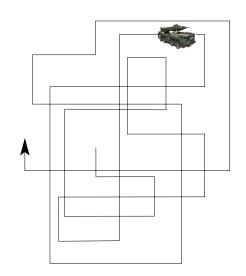


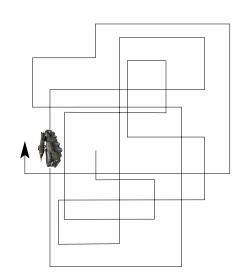


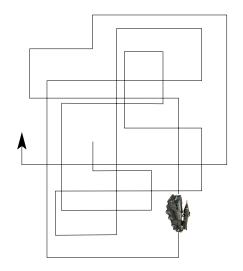


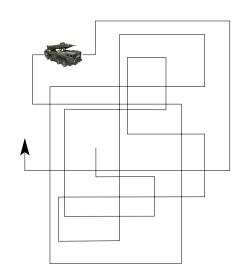


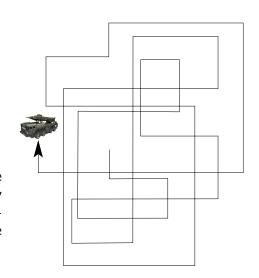


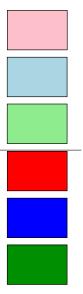


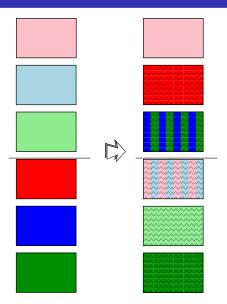


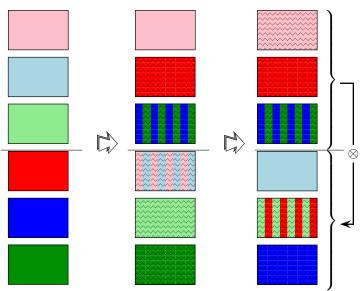


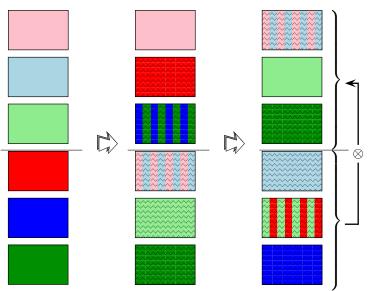


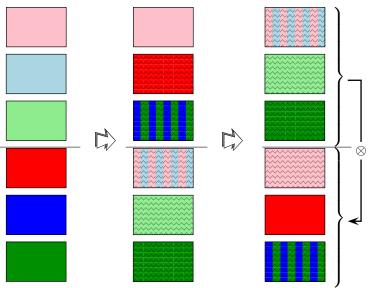


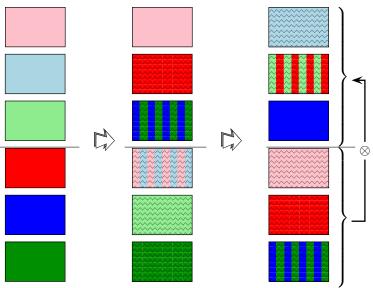


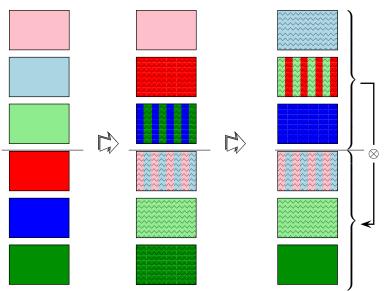


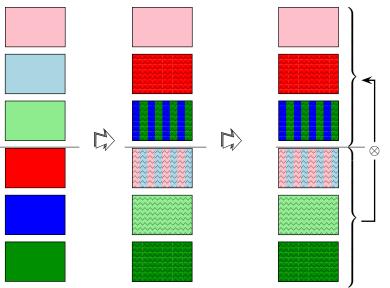








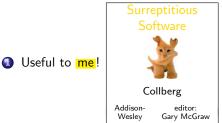






Discussion

• Are these observations useful at all?


Discussion

• Are these observations useful at all?

① Useful to me!

• Are these observations useful at all?

2 Can we model existing / predict future algorithms?

• Are these observations useful at all?

- 2 Can we model existing / predict future algorithms?
- Extend the model to incorporate attacks:

• Are these observations useful at all?

- 2 Can we model existing / predict future algorithms?
- Extend the model to incorporate attacks:
 - Attacks peel off layers of compositions.

Are these observations useful at all?

- 2 Can we model existing / predict future algorithms?
- Extend the model to incorporate attacks:
 - Attacks peel off layers of compositions.
 - 2 Model the difference in cost between defenses and attacks.

• Are these observations useful at all?

- 2 Can we model existing / predict future algorithms?
- Extend the model to incorporate attacks:
 - Attacks peel off layers of compositions.
 - Model the difference in cost between defenses and attacks.
- Develop a formal semantics!

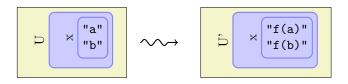
Are these observations useful at all?

- 2 Can we model existing / predict future algorithms?
- Extend the model to incorporate attacks:
 - Attacks peel off layers of compositions.
 - Model the difference in cost between defenses and attacks.
- Develop a formal semantics!

Useful to me!

• Find unexpressible natural/computational scenarios!

Are these observations useful at all?



- 2 Can we model existing / predict future algorithms?
- Extend the model to incorporate attacks:
 - Attacks peel off layers of compositions.
 - Model the difference in cost between defenses and attacks.
- Develop a formal semantics!
- Find unexpressible natural/computational scenarios!
- Eliminate redundant primitives!

Primitive #7: Map

- Translate every component into something different.
- Creates confusion or encodes data.
- Keep the inverse of the mapping function secret.

The Map Primitive — History

I will now catch up with my correspondence and attend to my household chores and hobbies. My Rock Garden is beautiful just now. As to my doll collection

I am trying to purchase a few foreign ones no longer

in the shops.

I just sectored a lovely Siamese Temple Dancer, it had been damaged, that is torein the middle, but it is now repaired and I like it very much. I could not get a mate for this Siam dencer, so I am redressing just a small plain ordinary doll into a second Siam doll.

I cannot say that I like this would be future Siam

doll now, yet I hope after a while I will perform a miracle and have a mate to my Siames dancer. My future production will be rather smaller than the original repaired one yet I am copping the costume

The Map Primitive — History

I will now catch up with my correspondence and attend to my household chores and hobbies. My Rock Garden is beautiful just now. As to my doll collection I am trying to purchase a few foreign ones no longer in the shops.

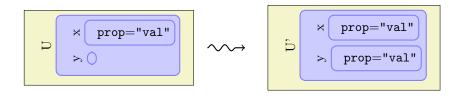
I just sectived a lovely Siamese Temple Dancer, it had been damaged, that is torein the middle, but it is now repaired and I like it very much. I could not get a mate for this Siam dancer, so I am redressing just a small plain ordinary doll into a second Siam doll. I cannot say that I like this would be future Siam doll now, yet I hope after a while I will perform a miracle and have a mate to my Siamese dancer. My future production will be rather smaller than the original repaired one yet I am copping the costume

Siamese Temple Dancer = aircraft carrier warship

The Map Primitive — History

I will now catch up with my correspondence and attend to my household chores and hobbies. My Rock Garden is beautiful just now. As to my doll collection I am trying to purchase a few foreign ones no longer in the shops.

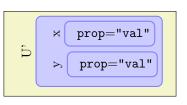
I just sectred a lovely Siamese Temple Dancer, it had been damaged, that is torein the middle, but it is now repaired and I like it very much. I could not get a mate for this Siam dancer, so I am redressing just a small plain ordinary doll into a second Siam doll. I cannot say that I like this would be future Siam doll now, yet I hope after a while I will perform a miracle and have a mate to my Siamese dancer. My future production will be rather smaller than the original repaired one yet I am copping the costume


Siamese Temple Dancer = aircraft carrier warship tore in the middle = torpedoed in the middle

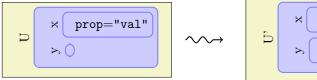
```
class DRM {
  int secretKey = 0xff004587;
  int decrypt (int data) {
    ....
  }
}
```

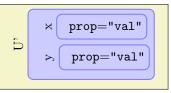
```
class DRM {
   int secretKey = 0xff004587;
   int decrypt (int data) {
 class C1 {
   int i1 = 0xff004587;
   int m1 (int x1) {
"the"
                                      "x0"
"big"
                                      "x1"
                              Universe
                                      "x2"
"bright"
                                      "x3"
"green"
                                      "x4"
"pleasure"
"machine"
                                      "x5"
```

Universe


Primitive #8: Mimic

• Use as camouflage — blend in with the background!

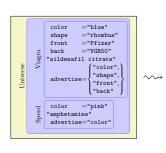

Primitive #8: Mimic

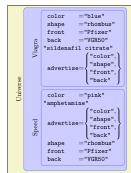


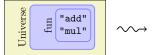
- Use as camouflage blend in with the background!
- Use as deterrent look scary!

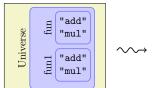
Primitive #8: Mimic

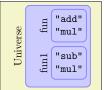
- Use as camouflage blend in with the background!
- Use as deterrent look scary!
- Copy a property from object A to B.

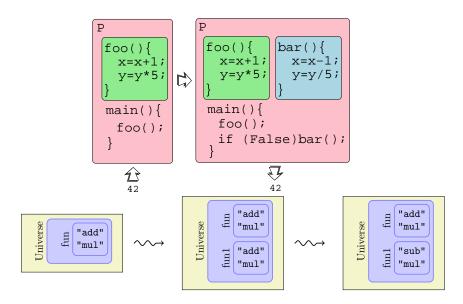

The Mimic Primitive — Biology










```
Ρ
 foo(){
    x=x+1;
    y=y*5;
 main(){
    foo();
```



```
Ρ
           Ρ
                                foo(){
                                              bar(){
             foo(){
                                  x=x+1;
y=y*5;
               x=x+1;
y=y*5;
                                                x=x-1;
                                              y=y/5;
             main(){
                                main(){
                                  foo();
               foo();
                                  if (False)bar();
                                      "add"
                                                                     "add"
                              Universe
                                                             Universe
                                      "mul"
                                                                     "mul"
Universe
        "add"
        "mul"
                                      "add"
                                                                     "sub"
                                                                 fun1
                                      "mul"
                                                                     "mul"
```


Tamperproofing has two parts:

detecting that an attack has occurred

The reaction can be a combination of

Tamperproofing has two parts:

- 1 detecting that an attack has occurred
- 2 reacting to this.

The reaction can be a combination of

Tamperproofing has two parts:

- 1 detecting that an attack has occurred
- Preacting to this.

The reaction can be a combination of

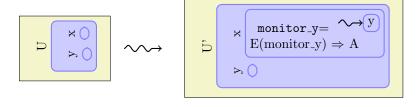
self-destructing (in whole or in part),

Tamperproofing has two parts:

- 1 detecting that an attack has occurred
- 2 reacting to this.

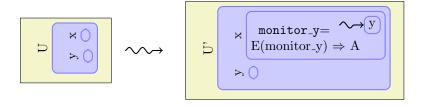
The reaction can be a combination of

- self-destructing (in whole or in part),
- destroying objects in the environment (including the attacker), or


Tamperproofing has two parts:

- 1 detecting that an attack has occurred
- Preacting to this.

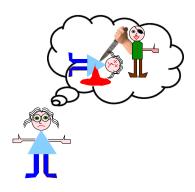
The reaction can be a combination of


- self-destructing (in whole or in part),
- destroying objects in the environment (including the attacker), or
- **3** regenerating the tampered parts.

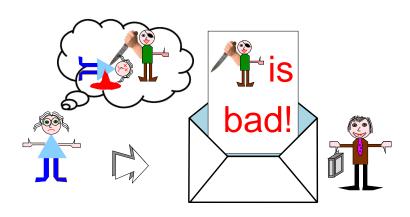
The Detect-respond Primitive

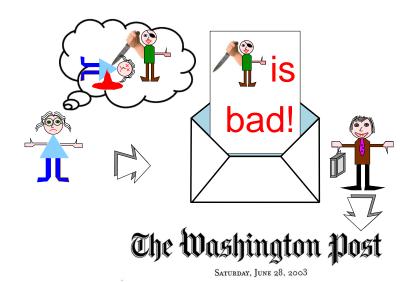
• A monitors the health of x.

The Detect-respond Primitive


- A monitors the health of x.
- If T should happen, execute tamper-response E.

The Detect-respond Primitive — Biology


 Some animals can regenerate destroyed parts of their bodies after an attack:


The Detect-respond Primitive — History

The Detect-respond Primitive — History

The Detect-respond Primitive — History


```
foo(){
}
```

```
foo(){
} ...
} foo(){
} ...
```

```
check(){
 if (hash(foo)!=42)
```

```
foo(){
              foo(){
}
                   if (hash(...)!=42)
check(){
 if (hash(foo)!=42)
```