
Remote Entrusting by Orthogonal Remote Entrusting by Orthogonal

Client ReplacementClient Replacement

Mariano Ceccato1,

Mila Dalla Preda2,

Anirban Majumdar3,

Paolo Tonella1

1Fondazione Bruno Kessler, Trento, Italy

2University of Verona, Italy

3University of Trento, Italy

16/10/2008 Remote Entrusting by Orthogonal Client Replacement 2

OutlineOutline

• Code integrity problem

• Orthogonal replacement

– Obfuscation

– Code splitting

• Empirical validation

16/10/2008 Remote Entrusting by Orthogonal Client Replacement 3

Un-trusted client
Un-trusted client

Un-trusted client

Un-trusted client

Un-trusted client Trusted server

Remote software trustingRemote software trusting

• Remote entrusting: A server executing on a trusted host ensuring
that an application running on a remote untrusted host (client) is
“healthy” (the problem of code integrity)

• Before delivering any service, the server wants to know that the
client is executing according to the server’s expectations.

16/10/2008 Remote Entrusting by Orthogonal Client Replacement 4

The Attack modelThe Attack model

An Attacker can:

• Use any dynamic/static
analysis tool to inspect
client’s code.

• Read the incoming and
outgoing messages.

• Read/write any memory
location, network
message, file.

Attacks:

• Reverse engineer and
make direct code change.

• Runtime modification of
the memory.

• Produce (possibly
tampered) copies of the
client program that run in
parallel.

• Interception and
tampering of network
messages.

16/10/2008 Remote Entrusting by Orthogonal Client Replacement 5

Attacker’s goalAttacker’s goal

• Goal: To tamper with the client’s code
without being detected by the server.

– Substantial program comprehension effort

required by a human adversary to understand

the inner logic of the application.

Client Server
�������

16/10/2008 Remote Entrusting by Orthogonal Client Replacement 6

ServerClient

Our approachOur approach

• Periodically replace the client code with a new version.
• This is tamper-proofing – provides time limited security

and deters attacks.

• We achieve this by applying:
– Obfuscation techniques
– Splitting applications

• Before application of the technique, we identify a Critical
Part (CP) of the application which is security sensitive.

C1
C2

C3

C0

16/10/2008 Remote Entrusting by Orthogonal Client Replacement 7

ObfuscationObfuscation

• Transforming a program CP into an equivalent one CP’
that is harder to reverse engineer, while maintaining its
semantics.
– Potency: obscurity added to a program

– Resilience: how difficult is to automatically de-obfuscate

– Cost: computation overhead of CP’

CP
T1 T2 T3 CP’

16/10/2008 Remote Entrusting by Orthogonal Client Replacement 8

SplittingSplitting

• The code of CPi can be split into (Ci, Si) where:
– Ci remains on the client
– Si runs on the server

• This process ensures that
– the code left on the client is orthogonal with respect to the

previous clients
– An expired client can not longer be used (it would not work with

the new server)

Client Server

�������
Ci

CPi

Si

16/10/2008 Remote Entrusting by Orthogonal Client Replacement 9

OrthogonalityOrthogonality

…
p
…

…
c
…

CPi
CPj

Statement orthogonality

c � p if:

the understanding of the of role of c in CPi does

not reveal information about the role of p in CPj

Program orgononality

CPi � CPj if:

they contains only* orthogonal statements

*Not possible to transform or move to the server:

• System calls

• Library calls

• Input output operations

16/10/2008 Remote Entrusting by Orthogonal Client Replacement 10

Orthogonal client Orthogonal client

generationgeneration

repeat

CPi = RandomTransform (CP)

CP = CPi

(Ci, Si) = MoveCompToServer(CPi, C1,…,Ci-1)

until (Ci � C1) � … � (Ci � Ci-1)

CP C1,…,Ci-1

(Ci, Si)

16/10/2008 Remote Entrusting by Orthogonal Client Replacement 11

TransformationTransformation

• Pool of semantic preserving transformations
from a catalog of obfuscations [CTL97]

• Propagations of annotations about black
statements and performance information

• The goal is to obstruct code comprehension

repeat

CPi = RandomTransform (CP)

CP = CPi

(Ci, Si) = MoveCompToServer(CPi, C1,…,Ci-1)

until (Ci � C1) � … � (Ci � Ci-1)

16/10/2008 Remote Entrusting by Orthogonal Client Replacement 12

SplittingSplitting

Leave on the client:

• Statements of CPi that are orthogonal to all

previous C1 …Ci-1

• Invariable part (black)

• Performance intensive statements

repeat

CPi = RandomTransform (CP)

CP = CPi

(Ci, Si) = MoveCompToServer(CPi, C1,…,Ci-1)

until (Ci � C1) � … � (Ci � Ci-1)

16/10/2008 Remote Entrusting by Orthogonal Client Replacement 13

Acceptance conditionAcceptance condition

• The new client

– is orthogonal

– is not just black statements (performance)

• Iterate in case the condition is not met

repeat

CPi = RandomTransform (CP)

CP = CPi

(Ci, Si) = MoveCompToServer(CPi, C1,…,Ci-1)

until (Ci � C1) � … � (Ci � Ci-1)

16/10/2008 Remote Entrusting by Orthogonal Client Replacement 14

Empirical validationEmpirical validation

16/10/2008 Remote Entrusting by Orthogonal Client Replacement 15

Clone based orthogonalityClone based orthogonality

• Orthogonality from a program comprehension
point of view is hard to define and quantify

• Practical and computable approximation of
orthogonality: based on clones

Clones

CPi CPj

Statement orthogonality

c � p if:

the understanding of the role of c

in CPi does not reveal information

about the role of p in CPj

16/10/2008 Remote Entrusting by Orthogonal Client Replacement 16

Alias based Alias based

opaque predicatesopaque predicates

• Opaque predicate: conditional expression whose value is
known to the obfuscator, but is difficult for an adversary to
deduce statically

• Precise inter-procedural static analysis is intractable

16/10/2008 Remote Entrusting by Orthogonal Client Replacement 17

class A {

int f1 ;

int f2 ;

void m () {

int tmp ;

f1 = 1 ;

f2 = f1 ++;

tmp = f1 ;

tmp = tmp - f1 ;

f1 = f1 +f2 ;

}

}

class A {

int f1 ;

int f2 ;

void m () {

int tmp ;

if (f ==g) {

f1 = 1 ;

f2 = f1 ++;

}

else {

}

if (g != h) {

tmp = f1 ;

tmp = tmp - f1 ;

f1 = f1 +f2 ;

}

else {

}

}

}

class A {

int f1 ;

int f2 ;

void m () {

int tmp ;

if (f ==g) {

f1 = 1 ;

f2 = f1 ++;

}

else {

tmp = f1 +f2 / 5 ;

f1 = f2 - tmp ;

}

if (g != h) {

tmp = f1 ;

tmp = tmp - f1 ;

f1 = f1 +f2 ;

}

else {

f1 = tmp / f2 ;

tmp = f2%59+f2 ;

}

}

}

Alias based Alias based

opaque predicatesopaque predicates
Aliases :

f = = g

g ! = h

Update :
updateAlias ()

class A {

int f1 ;

int f2 ;

void m () {

f1 = 1 ;

f2 = f1 ++;

int tmp = f1 ;

tmp = tmp - f1 ;

f1 = f1 + f2 ;

}

}

class A {

int f1 ;

int f2 ;

void m () {

int tmp ;

if (f ==g) {

f1 = 1 ;

updateAlias() ;

f2 = f1 ++;

}

else {

updateAlias() ;

tmp = f1 +f2 / 5 ;

f1 = f2 - tmp ;

}

if (g != h) {

updateAlias() ;

tmp = f1 ;

tmp = tmp - f1 ;

updateAlias() ;

f1 = f1 +f2 ;

}

else {

f1 = tmp / f2 ;

tmp = f2%59+f2 ;

updateAlias() ;

}

}

}

16/10/2008 Remote Entrusting by Orthogonal Client Replacement 18

Case studiesCase studies

• CarRace (on-line game)

– CPrace = 220 loc

• Chat application

– CPchat = 110 loc

• On line applications

• Written in Java (~1K loc each)

• Source code is sensitive to malicious
modifications

16/10/2008 Remote Entrusting by Orthogonal Client Replacement 19

Clone size thresholdClone size threshold

Small threshold

• Too many iterations of the algorithm
– exponential grown of the source code

• Most of the detected clones are false positives

• Improvements do not add security

Large threshold

• Algorithm is fast

• Too many false negatives
– Clients contain clones that could leak information to an attacker

repeat

CPi = RandomTransform (CP)

CP = CPi

(Ci, Si) = MoveCompToServer(CPi, C1,…,Ci-1)

until (Ci � C1) � … � (Ci � Ci-1)

16/10/2008 Remote Entrusting by Orthogonal Client Replacement 20

Clone size thresholdClone size threshold

1484

1564

0605

5363

27242

69121ChatClinet

0705

6423

33282

123141CarRace

TokensStatements
Clones

Min. clone length
Application

16/10/2008 Remote Entrusting by Orthogonal Client Replacement 21

Generation PerformanceGeneration Performance

2181000

97500

11100

750

110ChatClient

3471000

160500

21100

950

110CarRace

No. of clonesNo. of clientsApplication

• Application lifetime 5 years

• A replacement every 2 days

16/10/2008 Remote Entrusting by Orthogonal Client Replacement 22

AttacksAttacks

• Opaque predicates could be attacked
through dynamic analysis (debugging)

– Removing branches that are not executed

could cause the elimination of useful code

– We could add predicates that infrequently

evaluate to True (False) and if removed cause

the application to malfunction

– Use correlated opaque predicates (if such a

thing exists)

16/10/2008 Remote Entrusting by Orthogonal Client Replacement 23

Future workFuture work

• Clone size threshold estimation requires further

investigation

• Implementation of a full catalog of obfuscations

– e.g., variable splitting/encoding of the code left on the
client

• Evaluating how long a piece of code can resist

before been attacked

– Correct estimation of the replacement frequency

