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OutlineOutline

• Code integrity problem

• Orthogonal replacement

– Obfuscation

– Code splitting

• Empirical validation
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Un-trusted client
Un-trusted client

Un-trusted client

Un-trusted client

Un-trusted client Trusted server

Remote software trustingRemote software trusting

• Remote entrusting: A server executing on a trusted host ensuring 
that an application running on a remote untrusted host (client) is 
“healthy” (the problem of code integrity)

• Before delivering any service, the server wants to know that the
client is executing according to the server’s expectations.
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The Attack modelThe Attack model

An Attacker can:

• Use any dynamic/static 
analysis tool to inspect 
client’s code.

• Read the incoming and 
outgoing messages. 

• Read/write any memory 
location, network 
message, file.

Attacks:

• Reverse engineer and 
make direct code change.

• Runtime modification of 
the memory.

• Produce (possibly 
tampered) copies of the 
client program that run in 
parallel.

• Interception and 
tampering of network 
messages.



16/10/2008 Remote Entrusting by Orthogonal Client Replacement 5

Attacker’s goalAttacker’s goal

• Goal: To tamper with the client’s code 
without being detected by the server.

– Substantial program comprehension effort 

required by a human adversary to understand 

the inner logic of the application.

Client Server
�������
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ServerClient

Our approachOur approach

• Periodically replace the client code with a new version. 
• This is tamper-proofing – provides time limited security 

and deters attacks.

• We achieve this by applying: 
– Obfuscation techniques
– Splitting applications

• Before application of the technique, we identify a Critical 
Part (CP) of the application which is security sensitive.

C1
C2

C3

C0
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ObfuscationObfuscation

• Transforming a program CP into an equivalent one CP’ 
that is harder to reverse engineer, while maintaining its 
semantics.
– Potency: obscurity added to a program

– Resilience: how difficult is to automatically de-obfuscate

– Cost: computation overhead of CP’

CP
T1 T2 T3 CP’
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SplittingSplitting

• The code of CPi can be split into (Ci, Si) where:
– Ci remains on the client
– Si runs on the server

• This process ensures that
– the code left on the client is orthogonal with respect to the 

previous clients
– An expired client can not longer be used (it would not work with

the new server)

Client Server

�������
Ci

CPi

Si
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OrthogonalityOrthogonality

…
p
…

…
c
…

CPi
CPj

Statement orthogonality

c � p if:

the understanding of the of role of c in CPi does 

not reveal information about the role of p in CPj

Program orgononality

CPi � CPj if:

they contains only* orthogonal statements

*Not possible to transform or move to the server:

• System calls

• Library calls

• Input output operations
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Orthogonal client Orthogonal client 

generationgeneration

repeat

CPi = RandomTransform (CP)

CP = CPi

(Ci, Si) = MoveCompToServer(CPi, C1,…,Ci-1)

until (Ci � C1) � … � (Ci � Ci-1)

CP C1,…,Ci-1

(Ci, Si)
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TransformationTransformation

• Pool of semantic preserving transformations 
from a catalog of obfuscations [CTL97]

• Propagations of annotations about black 
statements and performance information

• The goal is to obstruct code comprehension

repeat

CPi = RandomTransform (CP)

CP = CPi

(Ci, Si) = MoveCompToServer(CPi, C1,…,Ci-1)

until (Ci � C1) � … � (Ci � Ci-1)
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SplittingSplitting

Leave on the client:

• Statements of CPi that are orthogonal to all 

previous C1 …Ci-1

• Invariable part (black)

• Performance intensive statements

repeat

CPi = RandomTransform (CP)

CP = CPi

(Ci, Si) = MoveCompToServer(CPi, C1,…,Ci-1)

until (Ci � C1) � … � (Ci � Ci-1)
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Acceptance conditionAcceptance condition

• The new client 

– is orthogonal

– is not just black statements (performance)

• Iterate in case the condition is not met

repeat

CPi = RandomTransform (CP)

CP = CPi

(Ci, Si) = MoveCompToServer(CPi, C1,…,Ci-1)

until (Ci � C1) � … � (Ci � Ci-1)
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Empirical validationEmpirical validation
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Clone based orthogonalityClone based orthogonality

• Orthogonality from a program comprehension 
point of view is hard to define and quantify

• Practical and computable approximation of 
orthogonality: based on clones

Clones

CPi CPj

Statement orthogonality

c � p if:

the understanding of the role of c

in CPi does not reveal information 

about the role of p in CPj
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Alias based Alias based 

opaque predicatesopaque predicates

• Opaque predicate: conditional expression whose value is 
known to the obfuscator, but is difficult for an adversary to 
deduce statically

• Precise inter-procedural static analysis is intractable
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class A {

int f1 ;

int f2 ;

void m ( ) {

int tmp ;

f1 = 1 ;

f2 = f1 ++;        

tmp = f1 ;

tmp = tmp - f1 ;

f1 = f1 +f2 ;

}

}

class A {

int f1 ;

int f2 ;

void m ( ) {

int tmp ;

if ( f ==g ) {

f1 = 1 ;

f2 = f1 ++;        

}

else {

}

if ( g != h ) {

tmp = f1 ;

tmp = tmp - f1 ;

f1 = f1 +f2 ;

}

else {

}

}

}

class A {

int f1 ;

int f2 ;

void m ( ) {

int tmp ;

if ( f ==g ) {

f1 = 1 ;

f2 = f1 ++;

}

else {

tmp = f1 +f2 / 5 ;

f1 = f2 - tmp ;

}

if ( g != h ) {

tmp = f1 ;

tmp = tmp - f1 ;

f1 = f1 +f2 ;

}

else {

f1 = tmp / f2 ;

tmp = f2%59+f2 ;

}

}

}

Alias based Alias based 

opaque predicatesopaque predicates
Aliases :

f = = g

g ! = h

Update :
updateAlias ( )

class A {

int f1 ;

int f2 ;

void m ( ) {

f1 = 1 ;

f2 = f1 ++;

int tmp = f1 ;

tmp = tmp - f1 ;

f1 = f1 + f2 ;

}

}

class A {

int f1 ;

int f2 ;

void m ( ) {

int tmp ;

if ( f ==g ) {

f1 = 1 ;

updateAlias( ) ;

f2 = f1 ++;

}

else {

updateAlias( ) ;

tmp = f1 +f2 / 5 ;

f1 = f2 - tmp ;

}

if ( g != h ) {

updateAlias( ) ;

tmp = f1 ;

tmp = tmp - f1 ;

updateAlias( ) ;

f1 = f1 +f2 ;

}

else {

f1 = tmp / f2 ;

tmp = f2%59+f2 ;

updateAlias( ) ;

}

}

}
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Case studiesCase studies

• CarRace (on-line game) 

– CPrace = 220 loc

• Chat application 

– CPchat = 110 loc

• On line applications 

• Written in Java (~1K loc each) 

• Source code is sensitive to malicious 
modifications



16/10/2008 Remote Entrusting by Orthogonal Client Replacement 19

Clone size thresholdClone size threshold

Small threshold

• Too many iterations of the algorithm
– exponential grown of the source code

• Most of the detected clones are false positives 

• Improvements do not add security

Large threshold

• Algorithm is fast

• Too many false negatives
– Clients contain clones that could leak information to an attacker

repeat

CPi = RandomTransform (CP)

CP = CPi

(Ci, Si) = MoveCompToServer(CPi, C1,…,Ci-1)

until (Ci � C1) � … � (Ci � Ci-1)
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Clone size thresholdClone size threshold

1484

1564

0605

5363

27242

69121ChatClinet

0705

6423

33282

123141CarRace

TokensStatements
Clones

Min. clone length
Application
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Generation PerformanceGeneration Performance

2181000

97500

11100

750

110ChatClient

3471000

160500

21100

950

110CarRace

No. of clonesNo. of clientsApplication

• Application lifetime 5 years 

• A replacement every 2 days
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AttacksAttacks

• Opaque predicates could be attacked 
through dynamic analysis (debugging)

– Removing branches that are not executed 

could cause the elimination of useful code

– We could add predicates that infrequently 

evaluate to True (False) and if removed cause 

the application to malfunction

– Use correlated opaque predicates (if such a 

thing exists)
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Future workFuture work

• Clone size threshold estimation requires further 

investigation

• Implementation of a full catalog of obfuscations

– e.g., variable splitting/encoding of the code left on the 
client

• Evaluating how long a piece of code can resist 

before been attacked

– Correct estimation of the replacement frequency


