Secure program partitioning for hardware-based
software protection

RE-TRUST'08 - Trento Italy (15-16 October 2008)

LaBRI - CNRS - Université Bordeaux 1 (Talence, France)

This work is partialy supported by CNRS, Region Aquitaine and Cryscoe ANR

Serge Chaumette Olivier Ly Renaud Tabary
chaumette®@labri.fr ly@labri.fr tabary@Iabri.fr

HW/SW software protection

Outline

© HW/SW software protection

HW/SW software protection

Software protection

Our goal is to protect a (part of a) software application against :
@ Analysis of the program
@ Tampering of code and/or data

Applications:
@ Intellectual property protection
e Protect high-value algorithms
@ Protect software against illegal modifications
o Game cheating, malwares, license verification bypass ...

HW/SW software protection

Software protection and RE-TRUST

RE-TRUST challenge

"How to ensure that a trusted program is running unmodified on
an untrusted computer ?”

NN \The Global
Core of Trust /" Secure Tags ' Internet
2nd Entrusting (- - 7)) 1st Untrusted
Machine . _Entrusting). Machine
****** = = e el = =
source: re-trust project
v

How software protection could contribute to RE-TRUST
@ Protect critical parts of the software against tampering
@ Protect the tag generation algorithm

@ Protect the whole software ...

HW/SW software protection

Software obfuscation

@ Most of current software protection schemes are based on
software obfuscation

Definition

Goal of obfuscation: transform a program into a functionnaly
equivalent virtual black box

@ Transform a program to make it hard to understand
o By static analysis
e By dynamic analysis
@ Widely used ... but no satisfactory solution yet
I Barak et al. - "On the (Im)possibility of Obfuscating
Programs” (2001)

HW/SW software protection

HW /SW obfuscation

Solution: Hardware/Software obfuscation :

@ The idea is to use a tamperproof trusted token along with the
untrusted computer

@ Trusted computing

o The trusted token validates the software before it is executed
on the untrusted computer
o Not very flexible

@ "Static” hardware protection

e At production time, a critical part of the program is written
into the trusted device

o This critical part will be executed on the device, and thus stays
protected

e Not flexible, one application = one device

@ Protected computing

HW/SW software protection

Protected computing

@ The software is divided into two parts:
e A public part, containing the low-value functions of the
program
e A private part, holding the critical functions of the software,
that will be executed in the secure token
@ No information on protected functions (besides input/output)
can be obtained from the untrusted environment

= Protected functions are virtual black boxes

HW/SW software protection

How it works ?

@ The private part of software is encrypted at production time
with the token secret key

@ The public part is executed on the untrusted computer
@ At run-time, when a protected function needs to be executed:
@ The encrypted function code as well as its inputs are sent to
the trusted token
@ The tamperproof hardware decrypts the code and executes it

© The outputs of the function are sent back to the untrusted
computer

HW/SW software protection

Protected computing

(——— - \\@ [

<
I

Program

iload 1 I
bipush 56

iada |
istores |

.
Virtual blackbox |9 T)
(encrypted code) Encrypted code + inputs,
o

| —
-\|\Ou(puts\|\

Pop
iinc 2
anewarray

N

Virtual black box m
(encrypted code) Ty

return

Untrusted environment Trusted environment

Figure: Protected computing

HW/SW software protection

Open problems

@ The idea is not new :

o |. Schaumiiller-Bichl and E. Piller A Method of Software
Protection Based on the Use of Smart Cards and
Cryptographic Techniques” (1984)

e Antonio Mana et al. "A framework for secure execution of
software” (2004)

@ Nevertheless, some problems remain open:
e What about data protection 7
e What about protection of arbitrary-long functions ?

Data Protection

Outline

© Data Protection

Data Protection

Data protection

Our proposal: data protection
@ The software manufacturer identifies
@ The critical functions of the program
@ The critical data of the software
@ Then, the set of private data is computed
e How: information flow analysis of the program
o What: all data that could leak information of critical data
o Finally, the private code part is computed

o Critical functions previously identified

o Code reading or writing private data (priv_var+=1)

o Code that depends on private data
if(privvar==1){ ... } else{ ... }

Data Protection

How it works

@ Like private code, private data are stored encrypted on the
untrusted host
@ At execution time, when a private code block needs to be
executed:
e Encrypted code as well as needed data will be sent to the

trusted device
e The trusted device will decrypt private code and data
o The protected code will then be exectued on the device
e The modified data will be sent back to the untrusted computer

@ Public data + Encrypted private data

@ No information on private code and data leaks from the
untrusted environnement

Data Protection

Data protection: execution time

I
|
I
N =0
I
I

executes
code

1
e Encrypted code
« Encrypted private data
« Public data

-
« Encrypted private data
* Public data

Untrusted environment Trusted environment

Secure program partitioning

Outline

© Secure program partitioning

Secure program partitioning

Considering limited devices

o Affordable tamperproof devices are often very limited
e Smartcards: ~ 4ko RAM
e Protected code blocks may be bigger
@ A solution would be to divide each protected code block into
small parts

LEES

@ However, simple partitioning may reveal control flow

@ ... and control flow may reveal private data !

Secure program partitioning

Example

S

Trusted devi
Untrusted computer rusted device

End loop

Attacker’s view:

Secure program partitioning

Example

Trusted device

Untrusted computer

End loop

Attacker’s view: P;

Secure program partitioning

Example

Trusted device
Untrusted computer

Attacker’s view: P;P»

Secure program partitioning

Example

Trusted device
Untrusted computer

Attacker’s view: P1P>P;

Secure program partitioning

Example

Trusted device
Untrusted computer

Attacker’s view: P;P>P1Ps

Secure program partitioning

Example

Trusted device

......... Untrusted computer

End loop

Attacker’s view: P;P>P1PsP;

Secure program partitioning

Example

Trusted device

Untrusted computer

End loop

Attacker’s view: PiP>P;P3PiPs

Secure program partitioning

Example

Trusted device

..... Untrusted computer

End loop

Attacker's view: PyPyPiP3P1Py = key = 010... or 101...

Secure program partitioning

Zhang's solution

@ Solution is to compute a minimal secure partitioning that
@ minimizes partition size
o keeps private data confidential

@ T.Zhang " Tamper-Resistant Whole Program Partitioning” (2003)
Unsafe partition sequence:

Same

&

Different

@ Safe partitioning :
e Do not generate this type of sequence
= algorithm: do not cut loop bodies

Secure program partitioning

Counter-example

@ Do not catch all information leakages

@ Counter example:

P1

= value of variable a >~ number of sent partitions

Secure program partitioning

Secure partitioning

@ T.Zhang's solution is not secure
o What we have done:

e Formal definition of a secure partition flow

e Formally proved secure partitioning algorithm
@ What is a secure partition flow ?

e A partition sequence should not leak information about
private data

e A partition sequence should be independant from private data

o ... while public data may leak

o Partitioning algorithm:

@ Identify code where control flow reveals private data (static
analysis)
@ Partition these blocks in a control-flow independant manner

Secure program partitioning

Example

Reads confidential data

Partition 0

Partition 1

Partition 2

Partition 3

Figure: Example of a minimal secure partitioning. Partitions traffic will
not depend on critical data.

Secure program partitioning

Analysis of our solution

@ Partitions size stays small
@ No private information leaks from the untrusted environment

e A partition sequence leaks no private data
o Code and data are kept encrypted on the untrusted
environment

@ Some information may leak:
e Public data
e Some control flow information of private code

o Existence of a loop, of a condition block
@ Loss of the virtual blackbox property
o Is it really unsecure ?

Conclusion

Outline

@ Conclusion

Conclusion

Current work

A proof of concept, JCaProtect, is under development

Application to the protection of Java executables:
e SAJE: Static Analysis for Java Executables
o JCaExternalizer: partitioning and encryption
o Lightweight Java interpreter hosted on the secure token

Non intrusive: protection of java object code

Cheap: partitioning allows the use of small secure devices
Drawbacks

o Performances: tests in progress
e Partitioning not always feasible

Conclusion

Conclusion

o Effective software solution based on a hard problem
o Reverse engineering of tamper-resitant devices
@ Improvement of protected computing

@ Data protection

@ Externalization of functions unlimited in size

© Can be used on cheap tamper-resitant devices (smartcards,
smartphones)

@ Proof of concept under development

Questions

Questions 7

	HW/SW software protection
	Data Protection
	Secure program partitioning
	Conclusion

