
HW/SW software protection Data Protection Secure program partitioning Conclusion

Secure program partitioning for hardware-based
software protection

RE-TRUST’08 - Trento Italy (15-16 October 2008)

LaBRI - CNRS - Université Bordeaux 1 (Talence, France)

This work is partialy supported by CNRS, Region Aquitaine and Cryscoe ANR

Serge Chaumette Olivier Ly Renaud Tabary
chaumette@labri.fr ly@labri.fr tabary@labri.fr



HW/SW software protection Data Protection Secure program partitioning Conclusion

Outline

1 HW/SW software protection

2 Data Protection

3 Secure program partitioning

4 Conclusion



HW/SW software protection Data Protection Secure program partitioning Conclusion

Software protection

Goal

Our goal is to protect a (part of a) software application against :

1 Analysis of the program

2 Tampering of code and/or data

Applications:

Intellectual property protection

Protect high-value algorithms

Protect software against illegal modifications

Game cheating, malwares, license verification bypass ...



HW/SW software protection Data Protection Secure program partitioning Conclusion

Software protection and RE-TRUST

RE-TRUST challenge

”How to ensure that a trusted program is running unmodified on
an untrusted computer ?”

source: re-trust project

How software protection could contribute to RE-TRUST

Protect critical parts of the software against tampering

Protect the tag generation algorithm

Protect the whole software ...



HW/SW software protection Data Protection Secure program partitioning Conclusion

Software obfuscation

Most of current software protection schemes are based on
software obfuscation

Definition

Goal of obfuscation: transform a program into a functionnaly
equivalent virtual black box

Transform a program to make it hard to understand

By static analysis
By dynamic analysis

Widely used ... but no satisfactory solution yet

! Barak et al. - ”On the (Im)possibility of Obfuscating
Programs” (2001)



HW/SW software protection Data Protection Secure program partitioning Conclusion

HW/SW obfuscation

Solution: Hardware/Software obfuscation :

The idea is to use a tamperproof trusted token along with the
untrusted computer

Trusted computing

The trusted token validates the software before it is executed
on the untrusted computer
Not very flexible

”Static” hardware protection

At production time, a critical part of the program is written
into the trusted device
This critical part will be executed on the device, and thus stays
protected
Not flexible, one application ⇒ one device

Protected computing



HW/SW software protection Data Protection Secure program partitioning Conclusion

Protected computing

The software is divided into two parts:

A public part, containing the low-value functions of the
program
A private part, holding the critical functions of the software,
that will be executed in the secure token

No information on protected functions (besides input/output)
can be obtained from the untrusted environment

⇒ Protected functions are virtual black boxes



HW/SW software protection Data Protection Secure program partitioning Conclusion

How it works ?

The private part of software is encrypted at production time
with the token secret key

The public part is executed on the untrusted computer

At run-time, when a protected function needs to be executed:
1 The encrypted function code as well as its inputs are sent to

the trusted token
2 The tamperproof hardware decrypts the code and executes it
3 The outputs of the function are sent back to the untrusted

computer



HW/SW software protection Data Protection Secure program partitioning Conclusion

Protected computing

Figure: Protected computing



HW/SW software protection Data Protection Secure program partitioning Conclusion

Open problems

The idea is not new :

I. Schaumüller-Bichl and E. Piller ”A Method of Software
Protection Based on the Use of Smart Cards and
Cryptographic Techniques” (1984)
Antonio Mana et al. ”A framework for secure execution of
software” (2004)

Nevertheless, some problems remain open:

What about data protection ?
What about protection of arbitrary-long functions ?



HW/SW software protection Data Protection Secure program partitioning Conclusion

Outline

1 HW/SW software protection

2 Data Protection

3 Secure program partitioning

4 Conclusion



HW/SW software protection Data Protection Secure program partitioning Conclusion

Data protection

Our proposal: data protection

The software manufacturer identifies
1 The critical functions of the program
2 The critical data of the software

Then, the set of private data is computed

How: information flow analysis of the program
What: all data that could leak information of critical data

Finally, the private code part is computed

Critical functions previously identified
Code reading or writing private data (priv var+=1)
Code that depends on private data
if(priv var==1){ ... } else{ ... }



HW/SW software protection Data Protection Secure program partitioning Conclusion

How it works

Like private code, private data are stored encrypted on the
untrusted host

At execution time, when a private code block needs to be
executed:

Encrypted code as well as needed data will be sent to the
trusted device
The trusted device will decrypt private code and data
The protected code will then be exectued on the device
The modified data will be sent back to the untrusted computer

Public data + Encrypted private data

No information on private code and data leaks from the
untrusted environnement



HW/SW software protection Data Protection Secure program partitioning Conclusion

Data protection: execution time



HW/SW software protection Data Protection Secure program partitioning Conclusion

Outline

1 HW/SW software protection

2 Data Protection

3 Secure program partitioning

4 Conclusion



HW/SW software protection Data Protection Secure program partitioning Conclusion

Considering limited devices

Affordable tamperproof devices are often very limited

Smartcards: ' 4ko RAM
Protected code blocks may be bigger

A solution would be to divide each protected code block into
small parts

However, simple partitioning may reveal control flow

... and control flow may reveal private data !



HW/SW software protection Data Protection Secure program partitioning Conclusion

Example

Attacker’s view:



HW/SW software protection Data Protection Secure program partitioning Conclusion

Example

Attacker’s view: P1



HW/SW software protection Data Protection Secure program partitioning Conclusion

Example

Attacker’s view: P1P2



HW/SW software protection Data Protection Secure program partitioning Conclusion

Example

Attacker’s view: P1P2P1



HW/SW software protection Data Protection Secure program partitioning Conclusion

Example

Attacker’s view: P1P2P1P3



HW/SW software protection Data Protection Secure program partitioning Conclusion

Example

Attacker’s view: P1P2P1P3P1



HW/SW software protection Data Protection Secure program partitioning Conclusion

Example

Attacker’s view: P1P2P1P3P1P2



HW/SW software protection Data Protection Secure program partitioning Conclusion

Example

Attacker’s view: P1P2P1P3P1P2 ⇒ key = 010... or 101...



HW/SW software protection Data Protection Secure program partitioning Conclusion

Zhang’s solution

Solution is to compute a minimal secure partitioning that

minimizes partition size
keeps private data confidential

T.Zhang ”Tamper-Resistant Whole Program Partitioning” (2003)

Unsafe partition sequence:

Safe partitioning :

Do not generate this type of sequence
⇒ algorithm: do not cut loop bodies



HW/SW software protection Data Protection Secure program partitioning Conclusion

Counter-example

Do not catch all information leakages

Counter example:

⇒ value of variable a ' number of sent partitions



HW/SW software protection Data Protection Secure program partitioning Conclusion

Secure partitioning

T.Zhang’s solution is not secure

What we have done:

Formal definition of a secure partition flow
Formally proved secure partitioning algorithm

What is a secure partition flow ?

A partition sequence should not leak information about
private data
A partition sequence should be independant from private data
... while public data may leak

Partitioning algorithm:
1 Identify code where control flow reveals private data (static

analysis)
2 Partition these blocks in a control-flow independant manner



HW/SW software protection Data Protection Secure program partitioning Conclusion

Example

Figure: Example of a minimal secure partitioning. Partitions traffic will
not depend on critical data.



HW/SW software protection Data Protection Secure program partitioning Conclusion

Analysis of our solution

Partitions size stays small

No private information leaks from the untrusted environment

A partition sequence leaks no private data
Code and data are kept encrypted on the untrusted
environment

Some information may leak:

Public data
Some control flow information of private code

Existence of a loop, of a condition block
Loss of the virtual blackbox property
Is it really unsecure ?



HW/SW software protection Data Protection Secure program partitioning Conclusion

Outline

1 HW/SW software protection

2 Data Protection

3 Secure program partitioning

4 Conclusion



HW/SW software protection Data Protection Secure program partitioning Conclusion

Current work

A proof of concept, JCaProtect, is under development

Application to the protection of Java executables:

SAJE: Static Analysis for Java Executables
JCaExternalizer: partitioning and encryption
Lightweight Java interpreter hosted on the secure token

Non intrusive: protection of java object code

Cheap: partitioning allows the use of small secure devices

Drawbacks

Performances: tests in progress
Partitioning not always feasible



HW/SW software protection Data Protection Secure program partitioning Conclusion

Conclusion

Effective software solution based on a hard problem

Reverse engineering of tamper-resitant devices

Improvement of protected computing
1 Data protection
2 Externalization of functions unlimited in size
3 Can be used on cheap tamper-resitant devices (smartcards,

smartphones)

Proof of concept under development



HW/SW software protection Data Protection Secure program partitioning Conclusion

Questions

Questions ?


	HW/SW software protection
	Data Protection
	Secure program partitioning
	Conclusion

