
DDistributing trust verification to istributing trust verification to

increase application performanceincrease application performance

Ceccato Mariano1,

Jasvir Nagra2,

Paolo Tonella1

1Fondazione Bruno Kessler-IRST, Trento, Italy
2University of Trento, Italy

30/9/2007 Barrier Slicing for Remote
Software Trusting

2

Problem definitionProblem definition

• Network application, that
needs a services by the
trusted party.

• Trusted party means to
deliver the services only
to clients that can be
trustred.

• s: state of the program P

• m = f(s)

• k = g(m)

= g(f(s))

Un-trusted party

Program P

Trusted party

Network

m

k

30/9/2007 Barrier Slicing for Remote
Software Trusting

3

Problem definitionProblem definition

P is a valid state:

A(s) = true

P is entrusted:

E(m) = true

Un-trusted party

Application

Trusted party

m = f(s)

Remote entrusting problem:

E(m) ���� A(s)

Not sound:

E(m) = true

A(s) = false

Not complete:

E(m) = false

A(s) = true

30/9/2007 Barrier Slicing for Remote
Software Trusting

4

Un-trusted host Un-trusted host

Un-trusted host

Un-trusted host

Un-trusted host
Trusted host

Remote software trustingRemote software trusting

• Remote software authentication: ensuring a trusted machine (server) that
an un-trusted host (client) is running a “healthy” version of a program;

• The server is willing to deliver a given services only to clients that prove to
be “healthy”;

– The program is unadulterated.

– It is executed on top of unadulterated HW/SW.

– The execution process is not manipulated externally.

30/9/2007 Barrier Slicing for Remote
Software Trusting

5

Previous slicing Previous slicing

approachapproach

• Remove a portion of the program to protect and

run it on the server.

– Trade off between security and performances

Un-trusted host Trusted host

Network
Program P

30/9/2007 Barrier Slicing for Remote
Software Trusting

6

Program state partitionProgram state partition

• There is a limited status (set of program variables) in an
application that we are interested in protecting.

• A sub-portion of this state (s|safe) can not modified by the
user, otherwise
– The client would receive a not-usable service or

– The server would notice it

Client

Program

Sensitive status

Not
tamperable

s = s|safe U s|unsafe

A(s) = Asafe(s|safe) Λ Aunsafe(s|unsafe)

30/9/2007 Barrier Slicing for Remote
Software Trusting

7

State tamperingState tampering

ŝ|safe is sent:

• Asafe(ŝ|safe) = false,

• tampering is detected

s|safe (!= ŝ|safe) is sent:

• Asafe(s|safe) = true,

• Service is not usable

• Tampering is useless

ŝ = ŝ|safe U ŝ|unsafe A(s) = Asafe(s|safe) Λ Aunsafe(s|unsafe)

Trusted hostUn-trusted host

ŝ Network

ŝ ≠ s A(s)

30/9/2007 Barrier Slicing for Remote
Software Trusting

8

Program sliceProgram slice

• Set of variables that
we are interested in
protecting.

• We remove those
variable from the
client.

• The (executable) slice
is replicated into the
server where it can be
executed safely.

1 time2 = System.currentTimeMillis();
2 double delta = speed * (time2 – time);
3 x = x + delta * cos(direction);
4 y = y + delta * sin(direction);
5 Server.sendPosition(x,y);
6 if (track.isInBox(x, y)){
7 gas = maxGas;
8 lastFuel = time2;
9 }
10 else {
11 gas = maxGas - (int) (time2-lastFuel);
12 if (gas < 0) {
13 gas = 0;
14 if (speed > maxSpeed /10)
15 speed = maxSpeed /10;
16 else if (speed < minSpeed/10)
17 speed = minSpeed/10;

}
}

18 time = time2;

30/9/2007 Barrier Slicing for Remote
Software Trusting

9

Barrier sliceBarrier slice

• Subset of variables that
can not modified by the

user, otherwise either:

– the client would receive a
not-usable service, or

– the server would notice it
(using assertions)

• They can be used as
barriers and block the

dependency propagation
when slicing (Krinke,

scam 2003)

1 time2 = System.currentTimeMillis();
2 double delta = speed * (time2 – time);
3 x = x + delta * cos(direction);
4 y = y + delta * sin(direction);
5 Server.sendPosition(x,y);
6 if (track.isInBox(x, y)){
7 gas = maxGas;
8 lastFuel = time2;
9 }
10 else {
11 gas = maxGas - (int) (time2-lastFuel);
12 if (gas < 0) {
13 gas = 0;
14 if (speed > maxSpeed /10)
15 speed = maxSpeed /10;
16 else if (speed < minSpeed/10)
17 speed = minSpeed/10;

}
}

18 time = time2;

un-safe

safe

30/9/2007 Barrier Slicing for Remote
Software Trusting

10

Program transformationProgram transformation

Un-trusted host:

• X ∈ un-safe
• X uses are removed from the

program;

• They are replaced by a query to get
the actual value over the network;

• X defs are replaced by
synchronization statements.

• Some optimizations…

Trusted host:

• A barrier-slice is run for each served
host;

• Client validity is continuously verified
(assertions);

• X values are provided as required;

• Synchronization with the un-trusted
hosts.

Trusted hostUn-trusted host

Network

30/9/2007 Barrier Slicing for Remote
Software Trusting

11

Example: CarRaceExample: CarRace

BOX

Position

Number of Laps

Speed

Fuel

Original

client
Slice

Barrier

slice

858 185 120 (-65)

22% 14% (-35%)

30/9/2007 Barrier Slicing for Remote
Software Trusting

12

PerformancesPerformances

Non-optimized:
• Very small delay between command and car response.

Optimized:
• No noticeable performance difference observed by the

player.

Communication overhead:
• Messages increase due to synchronization and delivery

of x ∈ un-safe

Regular messages Trust messaged Increase

Sent 1174 5910 5.03

Received 1172 5910 5.04

30/9/2007 Barrier Slicing for Remote
Software Trusting

13

Distributed architectureDistributed architecture

Un-trusted host Trusted host

Network
Program P

30/9/2007 Barrier Slicing for Remote
Software Trusting

14

Distributed architectureDistributed architecture

Un-trusted host Trusted host

Program P
Network

Card Reader

Virtual secure channel

30/9/2007 Barrier Slicing for Remote
Software Trusting

15

Memory scalabilityMemory scalability

• For two clients the memory requirements is the double.

• 220 Vs 32 bytes per each connected client (15%)

• 2325 Vs 820 bytes in the heap space

• Slice requires less than 25% of the application CPU time

30/9/2007 Barrier Slicing for Remote
Software Trusting

16

Threads scalabilityThreads scalability

• 4 Vs 1 new thread per connected client (25%)

30/9/2007 Barrier Slicing for Remote
Software Trusting

17

Network scalabilityNetwork scalability

• Distributed architecture exchanges the same
number of message as the original (not
protected) application.

• 145 Vs 1743 exchanged messages for each
new connected client (8%).

30/9/2007 Barrier Slicing for Remote
Software Trusting

18

Open challengesOpen challenges

• How to run multi-thread applications on a
smart-card;

• Limited memory and runtime capabilities
of smart cards;

• Architectural differences between JVM
and SM-JVM (security manager, primitive
types, libraries, etc.).

30/9/2007 Barrier Slicing for Remote
Software Trusting

19

Ongoing worksOngoing works

• Automatic support for the identification of
the secure and un-secure variables;

• Apply the barrier slicing to bigger test
cases to perform overhead
measurements;

• Integrate our approach with code
obfuscation to shrink the portion of code to
move on the card.

