Software based approaches

Mariano Ceccato

Content

« Continuous replacement
Christian Collberg

« White box remote procedure execution

Amir Herzberg, Amitabh Saxena, Haya Shulman, Bruno
Crispo

« Orthogonal replacement

Ceccato Mariano, Mila Dalla Preda, Anirban Majumbar, Paolo
Tonella

- Empirical evaluation of reverse engineering
complexity

Mariano Ceccato, Massimiliano Di Penta, Jasvir Nagra, Paolo
Falcarin, Filippo Ricca, Marco Torchiano, Paolo Tonella

Remote software trusting

« Remote software authentication: ensuring a (server) that
an un tusted host (client) is running a “healthy” version

of a program (code integrity)
« Before delivering any service the server wants to know
that the client is executing according to its expectations

.

~ Un-trusted client

Un-trusted client

\ A b Un-trusted client
~ ~ Ve _ ~ -
-
- -
. PR ' > P
Un-trusted client Trusted server B

Un-trustéd client

Attack model

Attacker on un_tusted Attacks:
host: - Reverse engineer and

« Any dynamic/static direct code change.
analysis tool » Runtime modification of

« Any software (buggers, the memory.
emulators, ...) » Produce (possibly

« Read/write any memory tampered) copies of P
location, register, that run in parallel.
network message, file. ~ « |nterception and change

of network messages.

Attacker goal

« Goal: to tamper with the application
code without being detected by the
server

— Substantial program understanding effort
by a human to understand the inner logic

to attack
- - > ‘ \
[_ Client T < - - - Server

Remote entrusting by
continuous replacement

« Basic idea: The server generates a continuous
sequence of

Obfuscated blocks:

Y a4 \
Server Client

O e

 |f replacement is quick enough, and versions
different enough, the attacker won't have time to
analyse the code.

« C and a Java implementations are underway.

Serverside Clientside

C’s

(mutator)
. Code | T

" block ™
scheduleg/'
1 service block
reqqest request
] Il
A { i :
Server | f Client
¥ Ty
- O
/ |
0 .
block pP1ggy- service
backed response

block

Remote entrusting by

continuous replacement

e The

level of tamperproofing you achieve

through this setup is determined by

1) t
f

o) t

ne fraction of the total number of blocks that
ne server shares with the client,

ne rate by which the server generates

mutated blocks and pushes them onto the
client, and

3) the rate by which the adversary can analyze
the continuously changing program in the
client’s bag-of-blocks.

WBRPE:
White Box Remote Procedure Execution

» (Goal: secure execution of programs in remote hostile
environment

* New white-box security primitive:
— The WBRPE is a tuple of PPT algorithms <G,H,U>

(hk,WVM) < G(1")

I SSS———
Remote Program Execution

= Applications: PIR, DRM, grid computing, mobile agents

« Threats m Ensure

To local host To local host

" Exposure of program or of = confidentiality of inputs
data embedded in program ,
= Integrity of output

= Receive incorrect output
TO remote host TO remote hOSt
= Exposure of remote input a = Privacy of remote input a
= By validating input programs

(hk,WVM) G(1")

Remote Program Execution:

Results

* New white-box security primitive, the WBRPE
— Basic building block

— Definitions & Security Specifications for remote programs
execution

Universal WBRPE
— WBRPE for a specific program = WBRPE for any program

Provably secure theoretical feasibility result for
WBRPE

— Secure function evaluation implemented via garbled circuits

Robust WBRPE combiner:

— Combined WBRPE scheme W”oW’is secure, if either W” or
W’is secure

Orthogonal replacement

* Periodically replace the client code with a
new version

— Orthogonal (obfuscated)
— Semantically different

CP,

Server \

Client

Obfuscation

« Transforming a program CP into an equivalent one CP’
that is harder to reverse engineer, while maintaining its
semantics.

« Opaque predicate:

— conditional expression whose value is known to the obfuscator,
but is difficult for an adversary to deduce statically
— Precise inter-procedural static analysis is intractable

[

ot Q.
a0

o
e - jagie gite] o Q

Hh

~—~ 2=z
o O

I o]

I ohERER =
56 o

3 3
o 0

mx X Qm P Q
Q B
ot
=
[oN
[0}

HQ
oo

Splitting

« The code of CP, can be split into (C,, S;) where:
— G, remains on the client
— S, runs on the server

« This process ensures that

— the code left on the client is orthogonal with respect to the
previous clients

— An expired client can not longer be used (it would not work with

the new server)
- > P
A P S
Server)

4 -

Orthogonality

.b- _

*Not possible to transform or move to the
server:

« System calls
 Library calls
* Input output operations

Generation Performance

Application No. of clients No. of clones

CarRace 10 1
50 9

100 21

500 160

{1000 O 347
ChatClient T 1
7

11

97

218

Attacks

» Opaque predicates could be attacked
through dynamic analysis (debugging)

— Removing branches that are not executed
could cause the elimination of useful code

— We could add predicates that infrequently
evaluate to True (False) and if removed
cause the application to malfunction

Research questions

RQ1: To what extent the obfuscation reduces the
capability of subjects to comprehend decompiled
source code?

RQ2: To what extent the obfuscation increases the time
needed to perform a comprehension task?

RQ3: To what extent the obfuscation reduces the
capability of subjects to perform a change task?

RQ4: To what extent the obfuscation increases the time
needed to perform a change task?

Experimental design
+ Decompiled code _

« Code browsing tools App

« Debuggers App2 G4 G3

« API documentation

- Possibility to run the _
(modified) code

App1

App2 G2 G1

Descriptive statistics

Correct answer

Clear Obfuscated

Accuracy

Comprehension Attack Overall
Trea Correct | Wrong | Correct
Clea 15 10 26
Obfuscate 8 24 16
P-value 0.33 0.009 0.006
(Fisher test)
Effect size 2.3 . 3.8
(Odds ratio)

60 -

)
= 50 -
d:(M1_M2)/G% _
8 Outliers
8 |
Data distance 34\
from box < 1.5 box ‘ 1
r
: 1
 Extension
o 1 |
Median M | 2 quartiles | ,
0— T T ll T T T
Treatment Clear Obf Clear Obf Clear Obf
Comprehension Attack Overall
Comprehension Attack Overall
P-value (Mann-Whitney) 0.002 0.19 0.02
Effect Size (Cohen d) 1.8 0.2 1.03

Conclusions

 HO1 The obfuscation does not significantly reduce source
code comprehensibility.

« HO04 The obfuscation does not significantly increase the
time needed to perform a change task.

