
Software based approaches

Mariano Ceccato

Content
• Continuous replacement

Christian Collberg

• White box remote procedure execution
Amir Herzberg, Amitabh Saxena, Haya Shulman, Bruno

Crispo

• Orthogonal replacement
Ceccato Mariano, Mila Dalla Preda, Anirban Majumbar, Paolo

Tonella

• Empirical evaluation of reverse engineering
complexity

Mariano Ceccato, Massimiliano Di Penta, Jasvir Nagra, Paolo
Falcarin, Filippo Ricca, Marco Torchiano, Paolo Tonella

Un-trusted client
Un-trusted client

Un-trusted client

Un-trusted client

Un-trusted client Trusted server

• Remote software authentication: ensuring a (server) that
an un- trusted host (client) is running a “healthy” version
of a program (code integrity)

• Before delivering any service the server wants to know
that the client is executing according to its expectations

Remote software trusting

Attack model

Attacker on un- trusted
host:

• Any dynamic/static
analysis tool

• Any software (buggers,

emulators, …)

• Read/write any memory

location, register,
network message, file.

Attacks:

• Reverse engineer and

direct code change.

• Runtime modification of

the memory.

• Produce (possibly

tampered) copies of P

that run in parallel.

• Interception and change

of network messages.

Attacker goal

• Goal: to tamper with the application
code without being detected by the
server

– Substantial program understanding effort

by a human to understand the inner logic

to attack

Client Server
Network

Remote entrusting by
continuous replacement

• Basic idea: The server generates a continuous
sequence of

Obfuscated blocks:

• If replacement is quick enough, and versions
different enough, the attacker won’t have time to
analyse the code.

• C and a Java implementations are underway.

Remote entrusting by
continuous replacement

• The level of tamperproofing you achieve
through this setup is determined by
1) the fraction of the total number of blocks that

the server shares with the client,

2) the rate by which the server generates
mutated blocks and pushes them onto the
client, and

3) the rate by which the adversary can analyze
the continuously changing program in the
client’s bag-of-blocks.

WBRPE:

White Box Remote Procedure Execution

• Goal: secure execution of programs in remote hostile

environment

• New white-box security primitive:

– The WBRPE is a tuple of PPT algorithms <G,H,U>

)1(),(
k

GWVMhk ←

hk

Local Host Remote Host

P

)(aP

H

vkukU
,

WVM
a

)(aPu
k

Remote Program Execution

• Threats
To local host

� Exposure of program or of
data embedded in program

� Receive incorrect output

To remote host
� Exposure of remote input a

� Ensure
To local host

� confidentiality of inputs

� Integrity of output

To remote host
� Privacy of remote input a

� By validating input programs

10

� Applications: PIR, DRM, grid computing, mobile agents

Local Host

)1(),(
k

GWVMhk ←
Remote Host

P

)(aP

H

vkukU
,

WVM
ahk

)(aPu
k

• New white-box security primitive, the WBRPE
– Basic building block

– Definitions & Security Specifications for remote programs
execution

• Universal WBRPE
– WBRPE for a specific program � WBRPE for any program

• Provably secure theoretical feasibility result for
WBRPE
– Secure function evaluation implemented via garbled circuits

• Robust WBRPE combiner:
– Combined WBRPE scheme W’’○W’ is secure, if either W’’ or

W’ is secure

Remote Program Execution:
Results

ServerClient

Orthogonal replacement

• Periodically replace the client code with a
new version

– Orthogonal (obfuscated)

– Semantically different

CP1
CP2

CP3

CP0

Obfuscation

• Transforming a program CP into an equivalent one CP’
that is harder to reverse engineer, while maintaining its
semantics.

• Opaque predicate:
– conditional expression whose value is known to the obfuscator,

but is difficult for an adversary to deduce statically

– Precise inter-procedural static analysis is intractable

Splitting
• The code of CPi can be split into (Ci, Si) where:

– Ci remains on the client
– Si runs on the server

• This process ensures that
– the code left on the client is orthogonal with respect to the

previous clients
– An expired client can not longer be used (it would not work with

the new server)

Client Server

Network
Ci

CPi

Si

Orthogonality

…
p
…

…
c
…

CPi
CPj

Statement orthogonality
c ┴ p if:
the understanding of the of c the role in CPi does
not reveal information about the role of p in CPj

Program orthogonality
CPi ┴ CPj if:
they contains only* orthogonal statements

*Not possible to transform or move to the
server:
• System calls
• Library calls
• Input output operations

Generation Performance
Application No. of clients No. of clones

CarRace 10 1

50 9

100 21

500 160

1000 347

ChatClient 10 1

50 7

100 11

500 97

1000 218
• Application lifetime 5 years

• A replacement every 2 days

Attacks

• Opaque predicates could be attacked
through dynamic analysis (debugging)

– Removing branches that are not executed

could cause the elimination of useful code

– We could add predicates that infrequently

evaluate to True (False) and if removed

cause the application to malfunction

Research questions

RQ1: To what extent the obfuscation reduces the
capability of subjects to comprehend decompiled
source code?

RQ2: To what extent the obfuscation increases the time
needed to perform a comprehension task?

RQ3: To what extent the obfuscation reduces the
capability of subjects to perform a change task?

RQ4: To what extent the obfuscation increases the time
needed to perform a change task?

Experimental design

• Decompiled code

• Code browsing tools

• Debuggers

• API documentation

• Possibility to run the
(modified) code

1st session Clear Obfuscated

App1 G1 G2

App2 G4 G3

2nd

session
Clear Obfuscated

App1 G3 G4

App2 G2 G1

Subject have been properly trained on:
• code obfuscation

• whole experimental environment

Descriptive statistics

Clear Obfuscated

1) Presence of statistical
difference

- correctness reduced

- time increases

Correct answer

Wrong answer

2) Determination of effect size
- likelihood to change it

wrong

- magnitude of time
increasing

Accuracy

Comprehension Attack Overall

Treatment Wrong Correct Wrong Correct Wrong Correct

Clear 7 11 3 15 10 26

Obfuscated 12 8 12 8 24 16

()

()qp

pq
OR

−

−
=

1/

1/

P-value

(Fisher test)

0.33 0.009 0.006

Effect size

(Odds ratio)

2.3 7.1 3.8

An odds indicate how
much likely is that an event
will occur as opposed to it
not occurring.

P-value < 5% : statistical
difference between treatments

Effect > 1 : relevant
effect

Time

�� �� � ����� �	
�� � �� � �	 	 �	 �
� � �� �� �� � �� � �� � �� � ��� ��� � � � � ��! "� � � #$� � �� �� # $� � �� �� #$� � �� �

%&'&(&)&*&+&&
Comprehension Attack Overall

P-value (Mann-Whitney) 0.002 0.19 0.02

Effect Size (Cohen d) 1.8 0.2 1.03

() σ/
21

MMd −=

The Cohen d
effect size
indicates the
magnitude of a
main factor
treatment effect
on the dependent
variables

Median 2 quartiles

Extension

Data distance
from box < 1.5 box

Outliers

Conclusions

• H01 The obfuscation does not significantly reduce source
code comprehensibility.

• H02 The obfuscation does not significantly increase the
time needed to perform code comprehension tasks.

• H03 The obfuscation does not significantly reduce the
capability of subjects to correctly perform a change task.

• H04 The obfuscation does not significantly increase the
time needed to perform a change task.

HA3 The obfuscation significantly reduces the capability of subjects to
correctly perform a change task.

Odds ratio = 7.1

HA2 The obfuscation significantly increases the time needed to
perform code comprehension tasks
Effect size = 1.8

