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Overview

 Software protection techniques

 Crypto guards

 Obfuscation techniques

 Fuzzing (analysis technique)

 White-Box …

 Hardware assisted software protection techniques

 Remote attestation with a TPM on a legacy OS

 Physically Observable Cryptography (POC)
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WP2 techniques

Crypto guards

Obfuscation techniques

White-box …



Crypto guards

 Construction [1]  Goal: protect software 

implementations against 

analysis and tampering.

 On demand encryption

 A crypto guard is a small piece 

of code, that dynamically 

decrypts code with a key 

derived from other code bytes

 Idea: deploy a large network of 

nested code guards to make 

life of an adversary hard.
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[1] J. Cappaert, B. Preneel, B. Anckaert, M. Madou, and K. De Bosschere, “Towards Tamper 

Resistant Code Encryption: Practice and Experience”, 2008

https://www.cosic.esat.kuleuven.be/publications/private/article-1026.pdf


Crypto guards -- analysis

 Implementation on SPEC CPU2006 test suite

 Experiments to measure cost in execution time

 1. Bulk encryption

 2. On demand encryption

Program Total func On demand Speed cost # guard

Mcf 22 20 1.09 28

Milc 159 146 8.17 543

Hmmer 234 184 3.20 873

Lbm 19 12 1.00 20

Sphinx_livepretend 210 192 6.65 1277



Crypto guards -- analysis

 3. Performance vs. security trade-off

 Hot code heuristic

hot code = code that is frequently called (k% times)

 Exp. 3: for k = 0.90: bulk encryption for hot code; on demand for 

remainder.

Program Total func On demand Speed cost # guard

Mcf 22 19 1.04 24

Milc 159 135 1.95 486

Hmmer 234 183 1.15 862

Lbm 19 8 1.00 17

Sphinx_livepretend 210 181 1.72 1257



Crypto guards -- analysis

 Experiment results
Cost in execution time
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Obfuscation techniques

 Goal: make static and dynamic analysis difficult

 Techniques

 Control Flow Flattening

 Opaque predicates
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Fuzzing [2]

 Submit random/unexpected data to an application, and 
monitor resulting errors

 Adaptive white-box testing 
technique

 In initial phase.

 Seems suitable to assess “invariants monitoring” 
techniques (invariants = constraints)
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[2] N. Kisserli, B. Preneel, “Surgical fuzzing of open source applications using static analysis”, 

COSIC internal report, 5 pages, 2008



White-Box Cryptography

 Goal: implement cryptographic primitives in such a way 
that they remain secure in a white-box attack context.

 How to assess the security of WBC?

 WBC techniques are very custom designed per primitive

 Assess security of O(Ek)

 O(Ek) is secure => Ek is secure (in black-box context)

 Traditional assessment of security in cryptography

 Direct proof (information theoretically secure)

 Proof by reduction (to some hard problem)

 Ad-hoc security



Security analysis of WBC

Black-Box White-Box

 Ad-hoc security

 Block ciphers

 Process of scrutinizing

 Cryptanalysis

 Design criteria (S-boxes, 

avalanche effect, diffusion 

properties, MDS,  …)

 White-boxed block cipher

 Metrics (diversity, 

ambiguity)

 Process of scrutinizing

 Cryptanalysis

 WB design criteria 

(differential properties, no 

MDS, …)



Security analysis of WBC

Black-Box White-Box

 Proof by reduction

 Typical for asymmetric 

crypto

 Provably secure based on 

some problems believed to 

be hard.

 Define model + attack 

goals: security notions

 Direct proof

 Symmetric ciphers from 

asymmetric crypto 

(cheating?)

 Model: def. obfuscation + 

context [3].

 P = NP?

[3] A. Saxena, B. Wyseur, “On White-Box Cryptography and Obfuscation”,  Cryptology ePrint

Archive, Report 2008/273, 2008



White-Box Remote Program Execution

 Framework:

 Goals

 Obfuscated Virtual Machine (OVM) able to execute generic 

programs (note: Barak et al.; Goldwasser et al. do not apply)

 program obfuscation as secure as underlying cipher

E.g.: level of “trust” in integrity of execution: 1 – 2-m, where

ε :  GF(2)n
 GF(2)n+m

Server client

OVM

ε(P, i)

ε(P(a,i))

a



WBRPE – security analysis

 Problem: the Obfuscated Virtual Machine (OVM) leaks 

EVERY computation (CPU and memory calls)

 How to make a secure OVM?

 From SFE (as presented at RE-TRUST 2008)

 Problem: size for reasonable circuits.

 Create a custom secure building block (towards a TM)

 Then, composing building blocks

 We are able to construct a secure VM for a narrow set of circuits

 Generalizing: universally composable cryptography (Canetti 2001)

 In practice (for now) – augment a VM (e.g., JVM)

 Deploy obfuscation techniques



WP3 techniques

Remote attestation

Physically observable cryptography



Remote attestation with a TPM

 Framework [4]

 Analysis

 Requirements

 Requirements on PIONEER (unpredictable, optimal checksum 

function, unpredictable random walk through memory); TEAS 

(unpredictable, well obfuscated checksum function)

 Trusted bootloader; trusted clock ticker

 Efficiency
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[4] D. Schellekens, B. Wyseur, B. Preneel, “Remote attestation on Legacy Operating Systems with 

Trusted Platform Modules”, REM 2007



Physically Observable Cryptography

 Goal: model a side-channel adversary, and attempt to 
obtain (provable) security on circuit implementations

 Models

 Micali & Reyzin

 Reduction proofs

 Problem:  for each extension, new assumptions required

 Ishai, Sahai, and Wagner

 Private circuits I: probing attacks

 Private circuits II: tamperable circuits

 Problem: realistic assumptions?

 Future research

 Improved models

 New constructions



Physically Observable Cryptography

 Micaly & Reyzin model
 Secure basic primitive

 Reduce security of other constructions
to security of the basic primitive

 Micali & Reyzin studied basic theoretic constructions
 (PO) OWF  (PO) PRNG

 Disadvantage: inefficient, not used in practice

 KUL
 Study of practical constructions (RSA-CPA; RSA-OAEP; RSA-FDH)

 Problem: requirements needed for each step

 Future work
 Change model

 Develop new schemes (not likely; will face similar problems)

Smart Card



Physically Observable Cryptography

 Ishai-Sahai-Wagner model (“Private circuits I”)

 Boolean circuit implementation

 Adversary can probe t wires

 t-security: adversary does not gain any information

 Construction

 Based on secret sharing

 Result: circuit with O(nt2) gates

 Problem: controversial model – „normal‟ adversaries do 

not probe, but measure power consumption



Conclusion

 Assess the security of techniques

 Metrics, empirical studies, fuzzing

 Obfuscation techniques

 Scrutinizing

 White-box implementations of block ciphers

 Hash functions (remote attestation)

 Provable security (reduction proofs)

 White-box implementations from asymmetric primitives

 White-Box Remote Program Execution (WBRPE)

 Physically Observable Cryptography (POC)

 Assumptions

 Trusted TPM, Trusted bootloader

 Model (obfuscation definition; leakage model)



Conclusions

 Our main question: how well are our defenses against 

„real-world‟ adversaries?


