

Towards Analysis of Various Protection Techniques

Brecht Wyseur, KULeuven December 15th 2008, Paris

Overview

Software protection techniques

- Crypto guards
- Obfuscation techniques
- Fuzzing (analysis technique)
- White-Box ...

Hardware assisted software protection techniques

VP3

- Remote attestation with a TPM on a legacy OS
- Physically Observable Cryptography (POC)

WP2 techniques

Crypto guards Obfuscation techniques White-box ...

Crypto guards

Construction [1]

- Goal: protect software implementations against analysis and tampering.
- On demand encryption
- A crypto guard is a small piece of code, that dynamically decrypts code with a key derived from other code bytes
- Idea: deploy a large network of nested code guards to make life of an adversary hard.

[1] J. Cappaert, B. Preneel, B. Anckaert, M. Madou, and K. De Bosschere, "Towards Tamper Resistant Code Encryption: Practice and Experience", 2008

Crypto guards -- analysis

- Implementation on SPEC CPU2006 test suite
- Experiments to measure cost in execution time
 - I. Bulk encryption
 - 2. On demand encryption

Program	Total func	On demand	Speed cost	# guard
Mcf	22	20	1.09	28
Milc	159	146	8.17	543
Hmmer	234	184	3.20	873
Lbm	19	12	1.00	20
Sphinx_livepretend	210	192	6.65	1277

Crypto guards -- analysis

- > 3. Performance vs. security trade-off
 - Hot code heuristic hot code = code that is frequently called (k% times)
 - Exp. 3: for k = 0.90: bulk encryption for hot code; on demand for remainder.

Program	Total func	On demand	Speed cost	# guard
Mcf	22	19	1.04	24
Milc	159	135	1.95	486
Hmmer	234	183	1.15	862
Lbm	19	8	1.00	17
Sphinx_livepretend	210	181	1.72	1257

Crypto guards -- analysis

Experiment results

Cost in execution time

Obfuscation techniques

- Goal: make static and dynamic analysis difficult
- Techniques

Opaque predicates

Fuzzing [2]

- Submit random/unexpected data to an application, and monitor resulting errors
- Adaptive white-box testing technique

- In initial phase.
- Seems suitable to assess "invariants monitoring" techniques (invariants = constraints)

 [2] N. Kisserli, B. Preneel, "Surgical fuzzing of open source applications using static analysis", COSIC internal report, 5 pages, 2008

White-Box Cryptography

- Goal: implement cryptographic primitives in such a way that they remain secure in a white-box attack context.
- How to assess the security of WBC?
 - WBC techniques are very custom designed per primitive
 - Assess security of O(E_k)
 - $O(E_k)$ is secure => E_k is secure (in black-box context)
- Traditional assessment of security in cryptography
 - Direct proof (information theoretically secure)
 - Proof by reduction (to some hard problem)
 - Ad-hoc security

Security analysis of WBC

Black-Box

- Ad-hoc security
 - Block ciphers

- Process of scrutinizing
 - Cryptanalysis
 - Design criteria (S-boxes, avalanche effect, diffusion properties, MDS, ...)

White-Box

- White-boxed block cipher
- Metrics (diversity, ambiguity)
- Process of scrutinizing
 - Cryptanalysis
 - WB design criteria (differential properties, no MDS, ...)

Security analysis of WBC

Black-Box

Proof by reduction

- Typical for asymmetric crypto
- Provably secure based on some problems believed to be hard.
- Define model + attack goals: security notions

White-Box

- Symmetric ciphers from asymmetric crypto (cheating?)
- Model: def. obfuscation + context [3].

Direct proof

▶ P = NP?

[3] A. Saxena, B. Wyseur, "On White-Box Cryptography and Obfuscation", Cryptology ePrint Archive, Report 2008/273, 2008

White-Box Remote Program Execution

Framework:

Goals

- Obfuscated Virtual Machine (OVM) able to execute generic programs (note: Barak et al.; Goldwasser et al. do not apply)
- ▶ program obfuscation as secure as underlying cipher E.g.: level of "trust" in integrity of execution: $I - 2^{-m}$, where ε : GF(2)ⁿ → GF(2)^{n+m}

WBRPE – security analysis

- Problem: the Obfuscated Virtual Machine (OVM) leaks <u>EVERY</u> computation (CPU and memory calls)
- How to make a secure OVM?
 - From SFE (as presented at RE-TRUST 2008)
 - Problem: size for reasonable circuits.
 - Create a custom secure building block (towards a TM)
 - Then, composing building blocks
 - We are able to construct a secure VM for a narrow set of circuits
 - Generalizing: universally composable cryptography (Canetti 2001)
 - In practice (for now) augment a VM (e.g., JVM)
 - Deploy obfuscation techniques

WP3 techniques

Remote attestation Physically observable cryptography

Remote attestation with a TPM

- Requirements on PIONEER (unpredictable, optimal checksum function, unpredictable random walk through memory);TEAS (unpredictable, well obfuscated checksum function)
- Trusted bootloader; trusted clock ticker
- Efficiency

^[4] D. Schellekens, B. Wyseur, B. Preneel, "Remote attestation on Legacy Operating Systems with Trusted Platform Modules", REM 2007

Physically Observable Cryptography

- Goal: model a side-channel adversary, and attempt to obtain (provable) security on circuit implementations
- Models
 - Micali & Reyzin
 - Reduction proofs
 - Problem: for each extension, new assumptions required
 - Ishai, Sahai, and Wagner
 - Private circuits I: probing attacks
 - Private circuits II: tamperable circuits
 - Problem: realistic assumptions?
- Future research
 - Improved models
 - New constructions

Physically Observable Cryptography

- Micaly & Reyzin model
 - Secure basic primitive
 - Reduce security of other constructions to security of the basic primitive

- Micali & Reyzin studied basic theoretic constructions
 - ▶ (PO) OWF \rightarrow (PO) PRNG
 - Disadvantage: inefficient, not used in practice
- KUL
 - Study of practical constructions (RSA-CPA; RSA-OAEP; RSA-FDH)
 - Problem: requirements needed for each step
- Future work
 - Change model
 - Develop new schemes (not likely; will face similar problems)

Physically Observable Cryptography

Ishai-Sahai-Wagner model ("Private circuits I")

- Boolean circuit implementation
- Adversary can probe t wires
- t-security: adversary does not gain any information

Construction

- Based on secret sharing
- Result: circuit with O(nt²) gates
- Problem: controversial model 'normal' adversaries do not probe, but measure power consumption

Conclusion

Assess the security of techniques

- Metrics, empirical studies, fuzzing
 - Obfuscation techniques
- Scrutinizing
 - White-box implementations of block ciphers
 - Hash functions (remote attestation)
- Provable security (reduction proofs)
 - White-box implementations from asymmetric primitives
 - White-Box Remote Program Execution (WBRPE)
 - Physically Observable Cryptography (POC)

Assumptions

- Trusted TPM, Trusted bootloader
- Model (obfuscation definition; leakage model)

Conclusions

Our main question: how well are our defenses against 'real-world' adversaries?

