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RE-TRUST Project

Many prototypes developed:

1. Mobile Code continuously replaced:

a) Java Aspect on  DynamicAOP –JVM

b) Binary code on JVMTI interface- JVM5 

c) Binary code linked in EXE 

2. Invariants checking

3. Control-Flow Checking
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Prototype 1 a-b 
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Integrity check

 Module contains

List of crypto hashes (each method) 

Symmetric key

 Keyed hash recomputed each time a 
method is called

 Hash compared with “good” copy

 New Module checks previously 
deployed ones



Politecnico di Torino

6

Prototype 1a-b

 Execution interception
Module calculates proof

Seamless replacement at run-time 

Slow start-up

 Transparent tag insertion
Call to socket write are intercepted and data 
buffer is tagged

 Client code: 
Its image is checked in memory (JVMTI)

can be sandboxed (AOP)
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Prototype 1c

 The application is deployed incomplete

 Some binary code blocks are downloaded and 
linked in memory at start-up

 The memory layout si decided by the server, 
and it changes at every run

 Useful to defeat static analysis

Purged
Program

Network

Call/jump
reference
lookup
tables

scheduler

UN TN
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Program Instrumentation step

• PE header patch 
• make code segment writable at runtime;

• Disassembling the executable collecting
information about control-flow
• Instructions calls, jump, ret;

• Functions “to be protected” are purged
• They won’t be available in client application;

• Patching of calls/jumps referring to
purged functions:
• they will now point to scheduler()
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Runtime 

• When scheduler is invoked ->it send 
caller address to trusted node

• The TN uses its lookup tables to find 
out if the caller needs some purged 
code to be sent to the UN

• The scheduler in UN 
• receives the necessary code 

• Allocate it in memory 

• then executes it



Politecnico di Torino

Remote Control Flow Checking

 Split the program integrity verification 
among the untrusted and the trusted 
node:

Program execution performed on the 
untrusted node

Control flow validation performed on the 
trusted node
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Remote Control Flow Checking

 Basic flow:

The target application collects 
information (traces) about executed 
instructions

Traces are transmitted from the 
untrusted node to the trusted node

The trusted node validates the control 
flow of the application

Any violation is detected as an attack
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 The trusted node is in charge of:

Monitoring the flow of instructions 
received from the untrusted node 
(correct sequence of basic blocks)

Validating the checksum of each 
basic block (correct instructions 
opcode)
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Invariants Prototype: Car Race 

 Language: C++

 Graphic Library: Open GL

 IDE: Visual Studio 2003

 One Server, 2 players
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Car Game Prototype Gennaio 200917

Prototype: Car Race

 There are 10 check points.

 Every check points has a particular 
picture with DRM
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Car Game Prototype Gennaio 200918

Car Race: Security

 Security:

Secure Protocol

Invariants Checks

Mobile Code

Mutual Authentication

 Invariants Check

To protect algorithm 

To protect DRM
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Car Game Prototype Gennaio 200919

Car Race: Security

 Mobile Code

 Mutual Authentication  A client 
needs the server authentication, in 
fact without this “ACK”, the trusted 
platform uses a wrong key to crypt 
information.



Initial Analysis
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Open issues with mobility

 How to protect mobile modules?

Obfuscation

 How often a module is replaced?

It depends on time needed to understand 
it and implement an attack

 How to measure this Time-2-Break-It?

Metrics

Empirical Evaluation
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Obfuscation Metrics

 Source Code complexity 

Potency and other metrics (Collberg et al.)

Depth of Parse Tree (Goto et al.) 

DeObfuscation Time (Udupa et al.)

 Binary Code complexity 

Confusion Factor (Linn et al.): % of code 
that cannot be disassembled

 Compare Obfuscations (Anckaert et al.)

Code & control flow metrics

Data and data-flow metrics
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Empirical Evaluation of Obfuscation

 Complexity of reverse engineering binary code 

Asking a group of 10 students to perform static analysis, dynamic 

analysis and change tasks on several C (compiled) programs. 

They found that the subjects’ ability was significantly correlated with 

the success of reverse engineering tasks they had to perform. 

I. Sutherland, G. E. Kalb, A. Blyth, and G. Mulley.  An empirical 
examination of the reverse engineering process for binary files. 
Computers & Security, 25(3):221–228, 2006.

 Complexity of Java id-renaming source code obfuscation: 

Controlled experiment of Master and Ph.D students to crack  2 apps  

(one clear , one obfuscated)

Calculate statistical effect size of the applied obfuscation

M. Ceccato, M. Di Penta, J. Nagra, P. Falcarin, F. Ricca, M. Torchiano, 
and P. Tonella. Towards experimental evaluation of code obfuscation 
techniques. In Proc. of the 4th Workshop on Quality of Protection. ACM, 
Oct 2008
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