
RE-TRUST
PoliTO Prototypes Overview

Paolo Falcarin, Stefano DiCarlo

Alessandro Cabutto, Nicola Garazzino, Davide Barberis

RE-TRUST meeting

Paris, Dec 2008

Politecnico di Torino

RE-TRUST Project

Many prototypes developed:

1. Mobile Code continuously replaced:

a) Java Aspect on DynamicAOP –JVM

b) Binary code on JVMTI interface- JVM5

c) Binary code linked in EXE

2. Invariants checking

3. Control-Flow Checking

Politecnico di Torino

3

Prototype 1 a-b

Client
(e.g. Chat Client)
+
Execution monitor

Code Checker
(agent)

Tag Generator
(agent)

Server
(e.g. Chat Server)
+

Tag checker

Agent

managerauth

Msg Tag

update

update

CLIENT SERVER

Politecnico di Torino

4

Prototype(s)

UNTRUSTED

Chat Server

SERVICE

ENTRUSTER

TFlow Server
Chat Client

Politecnico di Torino

5

Integrity check

 Module contains

List of crypto hashes (each method)

Symmetric key

 Keyed hash recomputed each time a
method is called

 Hash compared with “good” copy

 New Module checks previously
deployed ones

Politecnico di Torino

6

Prototype 1a-b

 Execution interception
Module calculates proof

Seamless replacement at run-time

Slow start-up

 Transparent tag insertion
Call to socket write are intercepted and data
buffer is tagged

 Client code:
Its image is checked in memory (JVMTI)

can be sandboxed (AOP)

Politecnico di Torino

Prototype 1c

 The application is deployed incomplete

 Some binary code blocks are downloaded and
linked in memory at start-up

 The memory layout si decided by the server,
and it changes at every run

 Useful to defeat static analysis

Purged
Program

Network

Call/jump
reference
lookup
tables

scheduler

UN TN

Politecnico di Torino

Program Instrumentation step

• PE header patch
• make code segment writable at runtime;

• Disassembling the executable collecting
information about control-flow
• Instructions calls, jump, ret;

• Functions “to be protected” are purged
• They won’t be available in client application;

• Patching of calls/jumps referring to
purged functions:
• they will now point to scheduler()

Politecnico di Torino

Runtime

• When scheduler is invoked ->it send
caller address to trusted node

• The TN uses its lookup tables to find
out if the caller needs some purged
code to be sent to the UN

• The scheduler in UN
• receives the necessary code

• Allocate it in memory

• then executes it

Politecnico di Torino

Remote Control Flow Checking

 Split the program integrity verification
among the untrusted and the trusted
node:

Program execution performed on the
untrusted node

Control flow validation performed on the
trusted node

Politecnico di Torino

Remote Control Flow Checking

 Basic flow:

The target application collects
information (traces) about executed
instructions

Traces are transmitted from the
untrusted node to the trusted node

The trusted node validates the control
flow of the application

Any violation is detected as an attack

Politecnico di Torino

 The trusted node is in charge of:

Monitoring the flow of instructions
received from the untrusted node
(correct sequence of basic blocks)

Validating the checksum of each
basic block (correct instructions
opcode)

Politecnico di Torino

Invariants Prototype: Car Race

 Language: C++

 Graphic Library: Open GL

 IDE: Visual Studio 2003

 One Server, 2 players

Politecnico di Torino

Car Game Prototype Gennaio 200917

Prototype: Car Race

 There are 10 check points.

 Every check points has a particular
picture with DRM

Politecnico di Torino

Car Game Prototype Gennaio 200918

Car Race: Security

 Security:

Secure Protocol

Invariants Checks

Mobile Code

Mutual Authentication

 Invariants Check

To protect algorithm

To protect DRM

Politecnico di Torino

Car Game Prototype Gennaio 200919

Car Race: Security

 Mobile Code

 Mutual Authentication  A client
needs the server authentication, in
fact without this “ACK”, the trusted
platform uses a wrong key to crypt
information.

Initial Analysis

Politecnico di Torino

Open issues with mobility

 How to protect mobile modules?

Obfuscation

 How often a module is replaced?

It depends on time needed to understand
it and implement an attack

 How to measure this Time-2-Break-It?

Metrics

Empirical Evaluation

Politecnico di Torino

Obfuscation Metrics

 Source Code complexity

Potency and other metrics (Collberg et al.)

Depth of Parse Tree (Goto et al.)

DeObfuscation Time (Udupa et al.)

 Binary Code complexity

Confusion Factor (Linn et al.): % of code
that cannot be disassembled

 Compare Obfuscations (Anckaert et al.)

Code & control flow metrics

Data and data-flow metrics

Politecnico di Torino

Empirical Evaluation of Obfuscation

 Complexity of reverse engineering binary code

Asking a group of 10 students to perform static analysis, dynamic

analysis and change tasks on several C (compiled) programs.

They found that the subjects’ ability was significantly correlated with

the success of reverse engineering tasks they had to perform.

I. Sutherland, G. E. Kalb, A. Blyth, and G. Mulley. An empirical
examination of the reverse engineering process for binary files.
Computers & Security, 25(3):221–228, 2006.

 Complexity of Java id-renaming source code obfuscation:

Controlled experiment of Master and Ph.D students to crack 2 apps

(one clear , one obfuscated)

Calculate statistical effect size of the applied obfuscation

M. Ceccato, M. Di Penta, J. Nagra, P. Falcarin, F. Ricca, M. Torchiano,
and P. Tonella. Towards experimental evaluation of code obfuscation
techniques. In Proc. of the 4th Workshop on Quality of Protection. ACM,
Oct 2008

Politecnico di Torino

References
 [H. Chang and M. Atallah, "Protecting software code by guards" Proc. of ACM Workshop on Security and

Privacy in Digital Rights Management, 2002

 B. Horne, L. Matheson, C. Sheehan, and R. E. Tarjan, "Dynamic Self-Checking Techniques for Improved
Tamper Resistance" Proc. of ACM Workshop on Security and Privacy in Digital Rights Management, 2001

 Y. Chen, R. Venkatesan, M. Cary, R. Pang, S. Sinha, and M. Jakubowski, "Oblivious hashing: Silent Verification
of Code Execution" Proc. of 5th International Workshop on Information Hiding (IHW 2002), 2002

 B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. P. Vadhan, and K. Yang, "On the (Im)possibility
of Obfuscating Programs" Proc. of CRYPTO 2001, 2001

 D. Aucsmith, "Tamper resistant software: An implementation" in Information Hiding, Lecture Notes in
Computer Science 1174, R. J. Anderson, Ed.: Springer-Verlag, 1996.

 The Trusted Computing Group. On-line at https://www.trustedcomputinggroup.org

 R. Sailer, X. Zhang, T. Jaeger, and L. VanDoorn, "Design and Implementation of a TCG-based Integrity
Measurement Architecture" Proc. of 13th USENIX Security Symposium, 2004, pp. 223-238.

 M. Jakobsson, K. Reiter, "Discouraging Software Piracy Using Software Aging". ACM Workshop on Security and
Privacy in Digital Rights Management, Philadelphia, USA, November 2001.

 Kennell, R., Jamieson, L. H., Establishing the Genuinity of Remote Computer Systems. Proceedings of the
12th USENIX Security Symposium, 2003

 Maña, A., López, J., Ortega, J., Pimentel, E., Troya, J.M., A Framework for Secure Execution of Software.
International Journal of Information Security, Vol. 3(2), 2004

 Sander, T., Tschudin, C. F., Towards Mobile Cryptography. IEEE Symposium on Security and Privacy, 1998

 A. Seshadri, M. Luk, E. Shi, A. Perrig, L. van Doorn, and P. Khosla, Pioneer: Verifying Integrity and
Guaranteeing Execution of Code on Legacy Platforms. In 20th ACM Symposium on Operating Systems
Principles (SOSP-05), Brighton, UK, October 2005.

 P. Falcarin, R. Scandariato, and M. Baldi: Remote Trust with Aspect Oriented Programming. In IEEE 20th
International Conference on Advanced Information Networking and Applications (AINA 06), 2006

 Garay, J.A., and Huelsbergen, L.: Software Integrity Protection Using Timed Executable Agents. In Proc. ACM
Symposium on InformAtion, Computer and Communications Security (ASIACCS'06), pp. 189-200, 2006.

Politecnico di Torino

References
 B. Anckaert, M. Madou, B. D. Sutter, B. D. Bus, K. D. Bosschere, and B. Preneel. Program

obfuscation: a quantitative approach. In QoP ’07: Proc. of the 2007 ACM Workshop on Quality
of protection, pages 15–20, New York, NY, USA, 2007. ACM.

 B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. Vadhan, and K. Yang. On the
(im) possibility of obfuscating programs. Lecture Notes in Computer Science, 2139, 2001.

 M. Ceccato, M. Di Penta, J. Nagra, P. Falcarin, F. Ricca, M. Torchiano, and P. Tonella. Towards
experimental evaluation of code obfuscation techniques. In Proc. of the 4th Workshop on
Quality of Protection. ACM, Oct 2008

 C. Collberg, C. Thomborson, and D. Low. Watermarking, tamper-proofing, and obfuscation -
tools for software protection. IEEE Transactions on Software Engineering, 28, 2002.

 H. Goto, M. Mambo, K. Matsumura, and H. Shizuya. An approach to the objective and
quantitative evaluation of tamper-resistant software. In Third Int. Workshop on Information
security (ISW2000), pages 82–96. Springer, 2000.

 C. Linn and S. Debray. Obfuscation of executable code to improve resistance to static
disassembly. In Computer and Communications Security Conference (CCS-03), pages 290–
299. ACM, 2003.

 A. N. Oppenheim. Questionnaire Design, Interviewing and Attitude Measurement. Pinter,
London, 199

 I. Sutherland, G. E. Kalb, A. Blyth, and G. Mulley. An empirical examination of the reverse
engineering process for binary files. Computers & Security, 25(3):221–228, 2006.

 S. Udupa, S. Debray, and M. Madou. Deobfuscation: reverse engineering obfuscated code.
Reverse Engineering, 12th Working Conference on, Nov. 2005.

