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Models and Abstractions

Any mathematical analysis of a computer program must be

an abstraction: some details are ignored and other features

are included in the model.

If every feature of reality were included in the model, then it

would no longer be a model, but the thing itself!

So: the right question to ask of any mathematical model or

scientific theory is not “Does it account for everything?” but

“Is it useful?”. In other words, “Does it account for all the

features of reality that we are interested in for this purpose?”.

For example: In analysing a computer program for

correctness, we are not interested in how long the program

takes to process the input, or what sequence of internal

states it goes through on the way to generating the result.



Syntax and Semantics of WSL

WSL is a Wide Spectrum Language which forms the basis for the

WSL theory of program transformations and the FermaT program

transformation system.

A transformation is any operation on a program which preserves

its external input-output behaviour.



Program States

A program starts executing in some state. A state is a collection

of variables each of which has a value. The collection of variables

is called the state space. The state space may change during the

execution of the program, with variables being added or removed.

So a state can be modelled as a function from the state space to

the set of values. This function returns the value of each variable

in the state space.

Programs may be non-deterministic: for the same initial state,

there may be two or more possible final states.

So we will represent the behaviour of a program by a function

which maps from each initial state to the set of possible final

states.

This function is called a state transformation.



The Semantics of WSL

for given initial state
Final set of states

Initial set of states



The WSL Kernel Language

“The quarks of programming”

The primitive kernel statements are constructed from formulae

and lists of variables.

Let P and Q be any formulae and x and y be any lists of variables:Assertion: {P} Does nothing if P is true, aborts if P is false;Guard: [Q] Ensures that Q is true by restricting previous

nondeterminism;Add variables: add(x) adds the variables in x to the state space

and assigns arbitrary values to them;Remove variables: remove(y) removes the variables in y from

the state space.



The WSL Kernel Language

“The quarks of programming”

The compound statements are as follows; for any kernel language

statements S1 and S2, the following are also kernel language

statements:Sequen
e: (S1; S2) executes S1 followed by S2;Nondeterministi
 
hoi
e: (S1 ⊓ S2) chooses one of S1 or S2 for

execution;Re
ursion: (µX.S1) where X appearing in the body S1

represents a recursive procedure call.
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Language Extensions

The simple and easily-transformed WSL is extended into a

powerful programming language by defining new constructs in

terms of existing ones.

Assignments can be defined using add and guard statements:

x := 1

is defined as: add(〈x〉); [x = 1]

while:

x := x + 1

is defined as:add(〈x′〉); [x′ = x + 1]; add(〈x〉); [x = x′]; remove(〈x′〉)
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Language Extensions

The if statement if B then S1 else S2 �
can be implemented by a nondeterministic choice with guarded

arms:

(([B]; S1) ⊓ ([¬B]; S2))

Loops are defined using recursion, for example the while loop:while B do S od
is defined:

(µX.((([B]; S); X) ⊓ [¬B]))



More Language Extensions

for loops

Dijkstra’s Guarded Command Language

Loops with multiple exits
Mutually recursive procedures (labels and gotos)
Local variables

Procedures and functions with parameters

Expressions with side-effects

Assembler language
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The Specification Statement

WSL is a “Wide Spectrum” language. It includes both low-level

programming constructs and high-level abstract specifications.x := x′.Q
“Assign a new value x′ to x such that Q is true, otherwise abort”

The formula Q defines the relationship between the new value

〈x′

1
, x′

2
, . . . , x′

n
〉 and the old value 〈x1, x2, . . . , xn〉

For example, add 1 to x:

〈x〉 := 〈x′〉.(x′ = x + 1)

Swap the values of x and y:

〈x, y〉 := 〈x′, y′〉.(x′ = y ∧ y′ = x)



The Specification Statement

Specification of a sorting program:

A := A′.(sorted(A′) ∧ permutation of(A′, A))

The output must be sorted and a permutation of the input.

It precisely describes what we want our sorting program to do

without saying how it is to be achieved
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Transformation Proof Methods

Transformation proof methods include:

Translate to the kernel language and prove the

transformation via:

Comparing the semantic functions; or

Comparing weakest preconditions

Prove via weakest preconditions without using the kernel

language

Prove by applying a sequence of existing transformations and

proof rules



Program Transformation

WSL includes both abstract specifications and executable

programs within the same language. This means that:

Refinement of a specification into an executable program, and

Reverse engineering from a program to a specification

are both examples of program transformations.



Modelling Assembler in WSL

Our approach involves three types of modelling:

1. Complete model: Each assembler instruction is translated

into WSL statements which capture all the effects of the

instruction, including condition codes and registers;

2. Partial model: Branches to register are modelled by

attempting to determine all possible targets of such a branch,

associating a value with each target, and calling a “dispatch”

routine which finds the target for the given value;

3. Self-modifying code: Some cases are detected and handled

(overwriting a NOP/branch, modifying a length field etc.)

but general self-modifying code requires human intervention:

usually to renovate the assembler using more standard

programming practices!



Modelling Assembler in WSL

Standard opcodes

Standard system macros for file handling etc.

User macros

Structured macros

Condition Code

BAL/BAS (Branch and Save)

Branch to Register

External Subroutine Calls



Modelling Assembler in WSL

Detected Jump Tables

EXecute Statements

Data Declarations

DSECT Base Register Modification

EQUates: constants and aliases

Self-Modifying Code

Structured and Unstructured CICS calls

SQL, etc.



Data Restructuring

All data declarations in the assembler module (including unnamed

data items) are parsed and added to a database which records for

each data element:

Name

Sequence number

Base CSECT or DSECT name

Type

Offset

Length

Repeat Count

Initial Value



Data Restructuring

The data restructuring process analyses the data layout into

nested structures. Where this is not possible, (eg overlapping data

declarations), structures are overlaid using:

union declarations in C; or

REDEFINES declarations in COBOL

Assembler DSECTs are converted to struct pointers in C and

LINKAGE SECTION data structures in COBOL.

C header files and COBOL copybooks are generated

automatically from the database.



Control Flow Restructuring

Unstructured control flow is represented using A
tion Systems:a
tions A1 :

A1 ≡ S1 end

. . .

An ≡ Sn end enda
tions

A collection of mutually recursive parameterless procedures
all Ai is a call to action Ai

A special statement 
all Z causes immediate termination of

the whole action system

An action system is a single statement which can appear as a

component of another statement (including another action

system)



Regular Action Systems

a
tions A1 :

A1 ≡ S1 end

. . .

An ≡ Sn end enda
tions

If execution of each action body Si always leads to an action

call (or 
all Z) then we have a Regular A
tion System.

In this case, action calls are like gotos: no action ever returns.

The system can only terminate via 
all Z



A Regular Action Systemvar 〈m := 0, p := 0, last := “”〉 :a
tions prog :

prog ≡ line := “”; m := 0; i := 1;
all inhere end

loop ≡ i := i + 1;if i = n + 1 then 
all alldone �;

m := 1;if item[i] 6= lastthen write(line var os);

line := “ ”; m := 0;
all inhere �;
all more end

inhere ≡ p := number[i];

line := item[i]; line := line ++ “ ” ++ p;
all more end
more ≡ if m = 1then p := number[i];

line := line ++ “, ” ++ p �;

last := item[i];
all loop end
alldone ≡ write(line var os); 
all Z end enda
tions end



Collapse Action Systemvar 〈m := 0, p := 0, last := “”〉 :

line := “”;

m := 0;

i := 1;do p := number[i];

line := item[i];

line := line ++ “ ” ++ p;do if m = 1then p := number[i];

line := line ++ “, ” ++ p �;

last := item[i];

i := i + 1;if i = n + 1then write(line var os); exit(2) �;

m := 1;if item[i] 6= lastthen write(line var os);

line := “”;

m := 0;exit(1) � od od end



Fully Restructured Version
i := 1;do line := item[i] ++ “” ++ number[i];do i := (i + 1);if item[(i − 1)] 6= item[i] ∨ i = (n + 1)then exit(1) �;

line := line ++ “, ” ++ number[i] od;

write(line var os);if i = (n + 1) then exit(1) � od



Assembler Restructuring

That was the easy part!

The hardest part of assembler restructuring is converting

assembler subroutines into structured pro
edures.
Subroutine call:

A 0001 ≡ r14 := 1234; 
all FOO end
A 0002 ≡ . . .

Subroutine return:

FOORET ≡ destination := r14; 
all dispatch end
. . .

dispatch ≡ if destination = 0 then 
all Zelsif . . .elsif destination = 1234 then 
all A 0002elsif . . . � end



Assembler Restructuring

The analyser has to do the following:

Determine which actions belong in the body of FOO

Prove (via dataflow analysis) that the value assigned to r14

always ends up in destination before the call to dispatch

Restructured code:

A 0001 ≡ r14 := NOTUSED 1234; FOO(); 
all A 0002 end

A 0002 ≡ . . .wherepro
 FOO() ≡ . . . end



Assembler Restructuring

Problems:

Multiple entry points to subroutine

Multiple exit points from subroutine

Branch from the middle of one subroutine into another

Two subroutines branch to common code

Returning directly to the caller’s caller

Increment the return address (to skip over a branch)

Overwrite the return address with a different one

A subroutine “return” which is actually a “call”

. . . and many more . . .



Assembler Restructuring

Currently, over 90% of all hand-written assembler modules can be

fully restructured automatically.
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Program Slicing

Idea: when attempting to understand a program we often

need to know how variables got their values at specific pointsInformal De�nition: A program slice is a subset of a program

which contains all the statements which can potentially affect

the values of certain variables of interest at given positions in

the program (E.g. we are interested in the value of variable x

on line 232. The sliced program contains everything needed

to compute x at that point)More Formal De�nition: A program slice S is a reduced,

executable program obtained from a program P by removing

statements, such that S replicates part of the behaviour of P



Program Slicing

Slicing allows one to find semantically meaningful

decompositions of programs, where the decompositions

consist of elements that are not textually contiguous

Program slicing is a technique for visualising dependencies

and restricting attention to just the components of a program

relevant to evaluation of certain expressions.

Basic slicing techniques:

Backward slicing reveals which other parts of the program the

value of an expression depends on

Forward slicing determines which parts of the program

depend on a particular expression.



Program Slicing

Classes of slicing techniques:

Static slicing

Syntactic slicing

Dynamic slicing

Conditioned slicing

Semantic slicing

Conditioned Semantic slicing

Slicing helps programmers understand program structure, which

aids program comprehension, maintenance, testing, and

debugging; slicing can also assist parallelisation, integration and

comparison of program versions.



Slicing as a Program Transformation

A slice is not generally a transformation of the original program

because a transformation has to preserve the whole behaviour of

the program, while in the slice some statements which affect the

values of some output variables (those not in the slice) may have

been deleted.



Slicing as a Program Transformation

A slice is not generally a transformation of the original program

because a transformation has to preserve the whole behaviour of

the program, while in the slice some statements which affect the

values of some output variables (those not in the slice) may have

been deleted.

Slicing can be formalised as a program transformation on a

modification of the original program.



Slicing as a Program Transformation

A key insight of this formulation is that it defines the concept of

slicing as a combination of two relations:

1. A syntactic relation (statement deletion) and

2. A semantic relation (which shows what subset of the

semantics has been preserved).
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x := y + 1;

y := y + 4;

x := x + z

where we are interested in the final value of x.
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Slicing as a Program Transformation

For example, suppose we have this program:

x := y + 1;

y := y + 4;

x := x + z

where we are interested in the final value of x.

The assignment to y on line 15 can be sliced away:

x := y + 1;

x := x + z

These two programs are not equivalent, because they have

different effects on the variable y. But if we append:remove(y)

then the result is two programs which are equivalent.



Reduction

The syntactic relation we need for slicing is called redu
tion.
A program S2 is a reduction of S1 if it can be formed from S1 by

replacing components of S1 by skip statements.skip is a reduction of any program.

Every program is a reduction of itself.



Semi-Refinement

A slice does not have to be exactly equivalent to the original

program. Consider the program:S; x := 0

where we are slicing on x and S has no assignments to x. Clearly

we want to slice away S.
But S; x := 0 is only equivalent to x := 0 on x provided S

terminates.

We want to be able to “slice away” potentially non-terminating

code. The semantic relation we need is semi-re�nement. A

semi-refinement preserves the behaviour of the original program

whenever the original program terminates. Otherwise, the

semi-refinement can do anything at all.



Syntactic Slice

A Synta
ti
 Sli
e of S on a set X of variables is any program S′

which satisfies these two conditions:

1. S′ is a reduction of S

i.e. S′ is formed from S by replacing statements by skip; and

2. S′ is a semi-refinement of S on X

i.e. S′ preserves the behaviour of S on X whenever S

terminates



Syntactic Slicing Example

sum := 0;

prod := 1;

i := 1;while i 6 n do

sum := sum + A[i];

prod := prod ∗ A[i];

i := i + 1 od;

PRINT(“sum = ”, sum);

PRINT(“prod = ”, prod)

Slice with respect to the variable prod on the last line



Syntactic Slicing Example

sum := 0;

prod := 1;

i := 1;while i 6 n do

sum := sum + A[i];

prod := prod ∗ A[i];

i := i + 1 od;

PRINT(“sum = ”, sum);

PRINT(“prod = ”, prod)

Slice with respect to the variable prod on the last line

These statements can be deleted



Syntactic Slicing Example

prod := 1;

i := 1;while i 6 n do

prod := prod ∗ A[i];

i := i + 1 od;

PRINT(“prod = ”, prod)

Slice with respect to the variable prod on the last line

The resultant slice



Syntactic Slice

Slicing an action system:a
tions A1 :

A1 ≡ sum := 0; 
all A2 end

A2 ≡ prod := 0; 
all A3 end

A3 ≡ i := 1; 
all A4 end

A4 ≡ if i 6 n then 
all A5 else 
all B1 � end
A5 ≡ sum := sum + A[i]; 
all A6 end
A6 ≡ prod := prod ∗ A[1]; 
all A7 end
A7 ≡ i := i + 1; 
all A4 end
B1 ≡ PRINT(“sum = ”, sum); 
all B2 end
B2 ≡ PRINT(“prod = ”, prod); 
all Z endenda
tions



Syntactic Slice

The slice on i is:a
tions A3 :

A3 ≡ i := 1; 
all A4 end

A4 ≡ if i 6 n then 
all A7 else 
all Z � end
A7 ≡ i := i + 1; 
all A4 end enda
tions
Here, we have unfolded and removed all actions which do nothing

other than call another action.



Slicing Example

Slices can be constructed by tracking 
ontrol dependen
ies anddata dependen
ies.
For example:while p?(i) doif q?(c)then x := f ;

c := g �;

i := h(i) od

Which statements do not contribute to the final value of x?



Slicing Example

while p?(i) doif q?(c)then x := f ;

c := g �;

i := h(i) od

Some of the control and data dependencies:

x := f
ctrl
−→ q?(c)

q?(c)
data
−→ c := g

x := f
ctrl
−→ p?(i)

q?(i)
ctrl
−→ p?(i)

p?(i)
data
−→ i := h(i)

It seems that everything is needed! ?



Slicing Example

Tracking all data and control dependencies will always produce a

valid slice, but not necessarily a minimal slice.

What is the minimal slice?while p?(i) doif q?(c)then x := f ;

c := g �;

i := h(i) od



Slicing Example

Tracking all data and control dependencies will always produce a

valid slice, but not necessarily a minimal slice.

What is the minimal slice?while p?(i) doif q?(c)then x := f ;

c := g �;

i := h(i) od

The assignment to c is redundant: once x has been assigned the

value f , it does not matter whether it is assigned again, or how

many times!



Semantic Slice

By dropping the syntactic relation in the definition of slicing we

get a more general form of slicing.

A semantic slice of S on X is any program S′ which satisfies the

condition:

1. S′ is a semi-refinement of S on X

i.e. S′ preserves the behaviour of S on X whenever S

terminates

This allows more freedom for simplification of the code.

Note, however, that while a syntactic slice is no larger than the

original program, a semantic slice could be smaller or larger.



Syntactic vs Semantic Slices

Original Syntactic slice on y Semantic slice on yif p = qthen x := 18else x := 17 �;if p 6= qthen y := xelse y := 2 �
if p = qthen skipelse x := 17 �;if p 6= qthen y := xelse y := 2 �
if p = qthen y := 2else y := 17 �



Slicing Example

A semantic slice can often give a more concise and

understandable result. For example:while p?(i) doif q?(c)then x := f ;

c := g �;

i := h(i) od



Slicing Example

A semantic slice can often give a more concise and

understandable result. For example:while p?(i) doif q?(c)then x := f ;

c := g �;

i := h(i) od

Becomes:

if p?(i) ∧ q?(c) then x := f �



Slicing Example

A semantic slice on the final value of sum for this program:

sum := 0;

prod := 1;

i := 1;while i 6 n do

sum := sum + A[i];

prod := prod ∗ A[i];

i := i + 1 od;

PRINT(“sum = ”, sum);

PRINT(“prod = ”, prod)



Slicing Example

A semantic slice on the final value of sum for this program:

sum := 0;

prod := 1;

i := 1;while i 6 n do

sum := sum + A[i];

prod := prod ∗ A[i];

i := i + 1 od;

PRINT(“sum = ”, sum);

PRINT(“prod = ”, prod)

The result is:

sum := REDUCE(“+”, A[1..n])



A Minimal Semantic Slice

For any program S and any set list of variables x in the final state

space, the single specification statement:x := x′.(¬WP(S, x 6= x′′))
is a valid semantic slice on x for S.
Here, WP denotes the Weakest Precondition.

For statements involving recursion or iteration, WP(S, x 6= x′′) is an

infinitely long formula. But the result still has practical

applications for analysing program fragments.
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A slice over a statement containing no loops or recursion can be

computed by a process of:
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tionSimplifyingRe�ning
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Abstraction and Refinement

A slice over a statement containing no loops or recursion can be

computed by a process of:

1. Abstra
tion to a specification statement;

2. Simplifying the specification statement; and

3. Re�ning the specification back to code again.



Abstraction and Refinement

For example, slicing this program on the final value of q:

x := 3;

v := v + x;var 〈x := y〉 :

x := x + 1;

z1 := x;

x := z2 + x;

v := v + x;

y := 0 end;

q := v



Abstraction and Refinement

For example, slicing this program on the final value of q:

x := 3;

v := v + x;var 〈x := y〉 :

x := x + 1;

z1 := x;

x := z2 + x;

v := v + x;

y := 0 end;

q := v

gives:

q := v + y + z2 + 4



Selective Unrolling

Another technique used in semantic slicing is Selective Unrolling

of loops. For example, slicing on the final value of found low:

i := 1;while i 6 n doif A[i] > highthen high := A[i]; found high := 1 �;if A[i] < lowthen low := A[i]; found low := 1 �;

sum := sum + A[i];

i := i + 1 od



Selective Unrolling

Another technique used in semantic slicing is Selective Unrolling

of loops. For example, slicing on the final value of found low:

i := 1;while i 6 n doif A[i] > highthen high := A[i]; found high := 1 �;if A[i] < lowthen low := A[i]; found low := 1 �;

sum := sum + A[i];

i := i + 1 od
The result is:

i := 1;while low 6 A[i] ∧ i 6 n do
i := i + 1 od;if i 6 n then found low := 1 �



Dynamic Slice

A dynamic slice of a program S is a reduced executable programS′ which replicates part of the behaviour of S on a particular initial

state. We can define this initial state by means of an assertion

{A} which specifies the initial value of each variable.

A Dynami
 Synta
ti
 Sli
e of S with respect to a set of variables X

and an initial state, defined by the assertion {A} is any program S′

which satisfies these two conditions:

1. S′ is a reduction of S
i.e. S′ is formed from S by replacing statements by skip; and

2. ({A}; S′) is a semi-refinement of ({A}; S) on X

i.e. S′ preserves the behaviour of S on X for the initial state

defined by A, provided S terminates on this state



Conditioned Slice

If we allow any initial assertion, then the result is called a

conditioned slice:

A Conditioned Synta
ti
 Sli
e of S with respect to a set of variables

X and any assertion {A} is any program S′ which satisfies these

two conditions:

1. S′ is a reduction of S
i.e. S′ is formed from S by replacing statements by skip; and

2. ({A}; S′) is a semi-refinement of ({A}; S) on X

i.e. S′ preserves the behaviour of S on X for every initial state

which satisfies A and for which S terminates.

If we remove the first requirement then we have a ConditionedSemanti
 Sli
e.



Raising the Abstraction Level

One way to raise the abstraction level is to delete irrelevant code.

If we are interested in determining the normal behaviour of a

module, then all error handling code is (in this context) irrelevant.

A powerful technique for detecting and deleting error handling

code makes use of FermaT transformations for abort statements.

The statement abort is equivalent to the assertion {false}. This, in

effect, asserts that “this point in the program will not be

reached”. (More precisely: “I don’t care what happens if

processing reaches this point”).

So, deleting error handling code is a form of conditioned slicing.



Raising the Abstraction Level

Transformations involving abort:
1. (S; abort) ≈ abort

2. (abort; S) ≈ abort

3. if B then abort else S � ≈ {¬B}; S
4. if B then S else abort � ≈ {B}; S
5. A procedure whose body consists of a single abort can be

unfolded and removed.



Raising the Abstraction Level

An example:if r3 = 0 then ERR123() �

. . .pro
 ERR123() ≡

code := 123;

WTO(“Error message...”);

GENERR() end

. . .pro
 GENERR() ≡

cleanup code;

. . . ;

ABEND end



Raising the Abstraction Level

When we see ABEND in the assembler program, we can be certain

that this not part of the normal processing.

So we generate an abstraction of the WSL program by inserting

an abort statement.

Then apply the abort processing transformations.



Raising the Abstraction Level

When we see ABEND in the assembler program, we can be certain

that this not part of the normal processing.

So we generate an abstraction of the WSL program by inserting

an abort statement.

Then apply the abort processing transformations.

The result is:

{r3 6= 0}



Migration Case Study (extract)
LAAA B LAB

BAL R10,ENDGROUP

LAB MVI LAAA+1,0

MVC WLAST,WRITEM

ZAP WNET,=P’0’

BAL R10,PROCGRP

MVI XSW1,X’FF’

B LAA

LAC BAL R10,PROCGRP

MVI XSW1,X’FF’

B LAA

LAD CLI XSW1,X’FF’

BNE LADA

BAL R10,ENDGROUP



Migration Case Study (extract)
LADA EQU *

MVC WPRT(17),=CL17’NUMBER CHANGED = ’

ED WORKB,WCHANGE

LA R4,WORKB

LA R1,9

LADB CLI 0(R4),C’ ’

BNE LADC

LA R4,1(R4)

BCT R1,LADB

LADC EX R1,WMVC1

*WMVC1 MVC WPRT+17(1),0(R4)

BAL R10,WRITE1



Metrics

Metric Raw WSL Structured WSL

Statements 561 106

Expressions 1,589 210

McCabe 184 17

Control/Data Flow 520 156

Branch–Loop 145 17

Structural 6,685 751



Migrated COBOL Code
MOVE LOW-VALUES TO XSW1

PERFORM S0040-READ-DDIN-P

PERFORM UNTIL END-OF-FILE

IF WLAST NOT = WRITEM THEN

IF F-LAAA NOT = 1 THEN

PERFORM S0050-ENDGROUP-P

END-IF

MOVE 0 TO F-LAAA

MOVE WRITEM TO WLAST

MOVE 0 TO WNET

END-IF

PERFORM S0080-PROCGRP-P

MOVE HIGH-VALUES TO XSW1

PERFORM S0040-READ-DDIN-P

END-PERFORM

IF XSW1 = HIGH-VALUES THEN

PERFORM S0050-ENDGROUP-P

END-IF

MOVE ’NUMBER CHANGED = ’ TO WPRT-X-1-17

CALL ’SMLED’ USING WORKB BY VALUE 1

BY REFERENCE CC1 WEDIT-ADDR WCHANGE BY VALUE 4



Typical Case Study Results

Typical results from a case study of a 442 line IBM Assembler

module, taken from a large commercial system. In this case study,

no manual transformations were required to get a compilable C

program.

No. of McCabe Control Flow Branch

Stage Statements Cyclometric /Data Flow /Loop Structural

Initial 958 133 806 405 10,449

Data tr. 916 107 688 335 6,856

Fix Assem 336 18 222 20 2,059



Metrics

No. of Statements is the number of executable statements in the

parse treeM
Cabe Cy
lometri
 is the usual McCabe cyclometric complexityControl Flow/Data Flow counts the number of control flow lines

and data flow linesBran
h/Loop is a metric which counts the size of loopsStru
tural is a metric which gives a weighted sum of the structural

features of the program.



Call Graph: Before



Call Graph: After
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Case Study 1

A complete assembler system consisting of 2,296 modules, 351 of

which consisted entirely of data declarations.

Total LOC Per module McCabe

Original Listings 11,959,084 6,149 —

Raw WSL 2,109,906 1,085 135

Transformed WSL 1,205,766 620 27

WSL without comments 528,440 272 27

C Code including comments 1,120,449 576 —

Over 43% of the modules (846 modules) contained no loops.



Case Study 1

Raising the abstraction level by deleting error handling code.

Analysis took 5 hours 10 minutes CPU time on a 2.6GHz P4

processor (under 10 seconds per module). A total of 3,876,378

transformations were applied, averaging 1,993 transformations per

module and 208 transformations per second.

Total LOC Per module McCabe

Original Listings 11,959,084 6,149 —

Raw WSL 2,109,704 1,085 135

Transformed WSL 513,616 264 25

Abstract WSL 256,853 132 23



Case Study 1

Raising the abstraction level by deleting error handling code.

For a programmer who needs to understand the main functions of

a module, and the algorithms it implements, reading a 132 line

abstract WSL program should be much simpler than trying to

make sense of a 6,000 line assembler listing!



Case Study 2

A random sample of 1,905 assembler modules taken from twelve

different organisations.

Over one million lines of source code.

Migration to C took 9 hours 21 minutes CPU time (19.1 seconds

per module) on the same PC as the first case study.

Raising the abstraction level took 12 hours 58 minutes CPU time.

FermaT applied a total of 10,318,338 transformations, averaging

6,062 transformations per module and 221 transformations per

second.

Note: this selection of modules is biased towards larger code

modules.



Case Study 2

Total LOC Per module McCabe

Original Listings 5,377,163 3,159 —

Raw WSL 4,047,258 2,378 373

Transformed WSL 736,816 433 62

Abstract WSL 442,764 260 50



Dynamic Slicing of Assembler

Traditional dynamic slicing algorithms incur a high runtime

overhead.

Our method for recording execution paths has virtually zero

overhead:

1. Insert breakpoints at the start of each basic block in the

assembler module. (FermaT already computes all the

potential targets of branch instructions)

2. An automatic breakpoint handler records that this basic block

was executed, restores the original instruction, and branches

back into the program.

3. Subsequent executions of the same basic block execute at full

speed with no performance penalty.

Total overhead is proportional to the size of the program, not the

execution time.



Dynamic Slicing of Assembler

If a program point is not reached during the execution(s) of

interest, then we can insert an abort (or equivalently, the assertion

{false}) at that point.

This is another form of conditioned slicing.

Combining dynamic and static slicing gives a very concise result.



Combined Slicing Case Study

UDATECNV is date conversion module developed by Micro Focus Ltd.

We are interested in how the variable WRKMTH is calculated for a

particular set of input data.

Assembler source file is 436 lines

Syntactic Slicing on WRKMTH generates a 48 line WSL file

Dynamic Slicing on the inputs of interest generates a 63 line

WSL file



Combined Slicing Case Study

Applying syntactic slicing on WRKMTH to the output of dynamic

slicing produces this result:

WRKMM := DDI0M;

DBLEWORD := pack(WRKMM);

WRKMTH := MONTHS[3 ∗ (cvb(DBLEWORD) − 1), 3]

Applying semantic slicing gives:

WRKMTH := MONTHS[3 ∗ (cvb(pack(DDI0M)) − 1), 3]

MONTHS consists of twelve three byte strings:

“JAN”, “FEB”, . . . , “DEC”.

Clearly, the program converts a month number DDI0M (in the

range 1–12) to a three character abbreviated month name.
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The FermaT Transformation System

The result of over 25 years research and development in

transformation theory

Uses a Wide Spectrum Language, called WSL, which was

developed in parallel with the development of the

transformation theory

FermaT implements over 100 transformations together with

their applicability conditions

Transformations are implemented in an extension of WSL,

called METAWSL



The FermaT Transformation System

FermaT is implemented almost entirely in METAWSL

Therefore, FermaT can transform its own source code!

This is used on a regular bases as part of the build process



The FermaT Transformation System

FermaT is use in commercial applications:

Assembler to C migration

Assembler to COBOL migration

Program Slicing

Program Comprehension

System Reengineering

FermaT is also used in the MSc in Software Engineering

course at many universities in Europe

The core FermaT transformation engine is available under the

GNU GPL from:

http://www.cse.dmu.ac.uk/∼mward/fermat.html


