
Theory of Obfuscation

and its practical 

applications
Amir Herzberg and Haya Shulman

Bar Ilan University



What is Obfuscation? (Intuitively)

• A compiler; output is `obfuscated' program

– Obfuscated program has same functionality as 

original, and similar performance

• Intuitive Security Goals: 

– Hide program

– Hide secrets inside a program

– Prevent modification of program

• Used to protect program running in untrusted PC:

– DRM, eVoting, `trusted' TCP, policy 

enforcement, …



Obfuscation: Theory vs. Practice

• Practice

– Obfuscation widely used

– Lots of skepticism: security, impossibility alike

• Theory

– Precise definitions (several variants)

– Impossibility results

– Positive (possibility) results

– Related tools

• This talk: review of theory and its applications



Theory of Obfuscation: Outline

• Introduction

• Definition: Virtual Black-Box Obfuscation

• Impossibility (negative) result

• Positive results and challenges 

• Beyond black-box obfuscation
– Non-malleability

– Verifiable non-malleability

• Few related goals and tools

– Public-key Obfuscation

– WBRPE (White-Box Remote Program Execution)

• Conclusions and open questions



Definition: Virtual Black-Box Security
[Barak et al., 2001]

• An obfuscator O is an efficient compiler that on 

input P outputs O(P), such that:

– Functionality:

• For every P, O(P) computes the same function as P

• Program O(P) is slightly slower (and larger) than P

– Virtual Black-Box: 

• Whatever Adv can compute with obfuscated code O(P)

• A `black-box Adv` BB can compute by only calling P 

Adv(P) ≈ BBAdv(O(P)) P

P(x)

x



Example: Obfuscating a Point Function 
[Canetti97]

• Point function Ix(w)={1 if w=x , 0 otherwise}

• Obfuscate Ix with perfectly one-way function f 

Let y=f(x)
Program ObfIx (w):

{ if y=f(w) return 1 else return 0 }

• Intuitively: y=f(x) reveals no more info than 

black-box access to Ix

Adv(P) ≈ BBAdv(ObfIx) f
f(x)

x

Adv(P) ≈Adv(f(x))



Example: Obfuscating a Point Function 
[Canetti97]

• Point function Ix(w)={1 if w=x , 0 otherwise}

• Obfuscate Ix with perfectly one-way function f 

Let y=f(x)
Program ObfIx (w):

{ if y=f(w) return 1 else return 0 }

• Intuitively: y=f(x) reveals no more info than 

black-box access to Ix

• But: this is a very specific obfuscator... 

• Is there general obfuscator (for all programs)?



Barak's Unobfuscatable Program 

• Is there a general obfuscator (for all programs)?

• [Barak et al, 01] No! 

• They present a program P that cannot be obfuscated

– Hence: no obfuscator for all programs!

• First, they present two programs C, D and then 

transform it into P

• Let C, D be two programs specified by two secret 
strings (α,β)

– Upon input x, Cαβ returns β if x=α and returns 0 (of 
same length as β) otherwise

– Upon input a program, D runs it with input α, and if 
the result is β, returns 1 otherwise 0



No Virtual Black-Box Compiler for Every 

Program

• Obfuscate C and D, to obtain O(Cαβ) on O(Dαβ)

• Evaluating O(Cαβ) on O(Dαβ), always results in 1

• Black-box access to C and D is similar to black-
box access to D and some program that always 
returns 0

• To extend the impossibility to single program, 
define P=D(C)

Dαβ
Cαβ

1

Dαβ Cαβ

Black-Box Simulator

≠



No Virtual Black-Box Compiler for Every 

Program

• So: some programs that cannot be obfuscated 

according to virtual black box definition

• So what? Practical implication? Options:

– Ignore…?

– Consider alternative, e.g., weaker definitions

• None so far?

– Consider obfuscation of specific programs

• Which? Few `positive results`...

• E.g., point function obfuscation, re-encryption



Theory of Obfuscation: Outline

• Introduction

• Definition: Virtual Black-Box Obfuscation

• Impossibility (negative) result

• Positive results and challenges 

• Beyond black-box obfuscation
– Non-malleability

– Verifiable non-malleability

• Related goals and tools

– Public-key Obfuscation

– Secure function evaluation (SFE) and Garbled Circuits

– Cryptocomputing and homomorphic encryption

• Conclusions and open questions



Obfuscator for Shared-Key Encryption 

• Let (EK ,DK) be shared key encryption

• [Hofheinz, Malone-Lee, Stam07]: there exists 

obfuscatable encryption schemes

– O(EK) gives public key encryption!

• How? Let (E',D') be public key encryption 

• Define shared key (E,D) scheme with key (e.d). 

(both keys of public key scheme) 

• Then O(Ee,d)=E'e is obfuscation of (E,D)...

– But again, is this `real' obfuscator?? 



Challenge: Obfuscatable Program

• All `positive results` use trivial obfuscators

– Based on properties of program

• Challenge: find programs P={PK} s.t.:

– Impossibility does not (seem to) hold for P

– Yet, no `trivial' obfuscator for P

• Preferably, non-trivial obfuscator – e.g. one that 

may work for some other programs too...



Non-Malleable Obfuscation

• Ensure non-malleability of obfuscated program

– Alice obfuscates a decryption algorithm which 

outputs the encrypted message only if certain 

conditions hold

– Eve modifies the program to always output the 

result of decryption

• Goal: prevent modifications of the obfuscated 

programs



Verifiable Non-Malleable Obfuscation

• Obfuscation is verifiably non-malleable if the only 
programs attacker can create that pass verification are 
those it could create given black-box access to 
obfuscated code

• Allows to detect attacks that were not prevented

– e.g., digitally sign obfuscated program, then verification 
procedure will check that the signature attached to the 
obfuscated program is correct
• According to unforgebility property it is impossible to modify the 

program

• How does the verification procedure obtains the verification key?

– May not be practical



Public-Key Obfuscation

• Public-Key obfuscator is a pair of algorithms 

(Compile,D)

– Use Compile to obfuscate secret program P, obtain 

O(P),K 

– The output is encryption of original program’s 

output

– Use D with K to recover result of O(P)(x) on some 

input x

– Correctness: for any input x, D(C(x))=P(x)



Fin


